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Central Dogma of Molecular Biology
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The evolution of transcriptomics
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RNA-seq and Microarray agree fairly well only for genes
with medium levels of expression

Correlation is very low for genes with either low or high expression levels.
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What is RNA-seq?

RNA-Seq is an approach to characterization and quantification
transcriptomes that uses next generation sequencing technologies.

RNA-seq does not rely on prior knowledge of gene structures. It can
be used to

identify novel transcripts
detect alternative splicing
profile the expression levels of known transcripts
detect single nucleotide polymorphisms (SNP)
non-coding RNA
gene fusion
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RNA-seq
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RNA-seq

Methods capable of giving a “snapshot” of RNA expression of all
genes

Can be used as diagnostic profile

Example: cancer diagnosis

Can show how RNA levels change during development, after exposure
to stimulus, during cell cycle, etc.

Can help us start to understand how whole systems function
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RNA-seq work flow
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RNA-seq: gene expression

Quantify gene expression from RNA-seq data

Read count is linearly related to the abundance of the target transcript

Count the number of reads fall in the transcripts
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RNA-seq: Normalization

Garber et.al Nature Methods, Nature 2010
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RNA-seq: Normalization

A quantification of gene expression level

RPKM (Reads Per Kilo-base exon model per Million mapped reads)

RPKM =
C

N
106 ∗

L
103

(1)

C: total reads falls into the gene region

N: total reads

L:length of the gene

FPKM (Fragments Per Kilo-base exon model per Million mapped
reads for paired-end reads)

Normalization: An attempt to exclude systematic variation by
statistical methods
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Source of variation in RNA-seq data

Systematic variation in RNA-seq experiments

Between-sample difference

Larger library sizes result in higher counts for the entire sample
RNA composition

Within-sample gene-specific effects

Gene length
GC-contents
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RNA seq data normalization

Total read count normalization (TC)

Assumption: read counts are proportional to expression levels

RPKM, FPKM

Assumption: read counts are proportional to expression level and gene
length.

Upper Quartile normalization (UQ)

Assumption: read counts are proportional to expression level, and total
read count is strongly dependent on highly expressed transcripts.

TMM (Robinson and Oshlack, 2010). Trimmed Mean of M values

Assumption: majority of transcripts are not differentially expressed.
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Differential expression

Two experimental conditions

Treated versus untreated

Two distinct phenotypes

Tumor versus normal tissue
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Assessment of differential expression

Fold change:

How large is the expression difference found?

P-value:

How sure are we that a true difference exists?
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Count-based methods (R packages)

DESeq: based on negative binomial distribution

edgeR: use an overdispersed Poisson model

baySeq: use an empirical Bayes approach

TSPM: use a two-stage poisson model
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edgeR

edgeR is a Bioconductor package that performs differential gene
expression analysis using count data under a negative binomial model.

The software works on a table of integer read counts, with rows
corresponding to genes and columns to independent libraries.

The counts represent the total number of reads aligning to each gene.

The methods used in edgeR do not support FPKM, RPKM or other
types of data that are not counts.
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Install edgeR

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("edgeR")

> library(edgeR)
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Lung cancer RNA-seq data set from TCGA

A lung cancer RNAseq data example

56 normal
56 tumor

Goal: Identify the differentially expressed genes between normal and
tumor samples.
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Reading data

#Change directory to the lung cancer directory
> setwd(”˜/Mary Yang/Workshop/Topic 4/Data”)

> geneCount = read.csv (”Lung Cancer GeneCount.csv”)
> dim (geneCount)
[1] 3000 113
> geneCount[1:10, 1:8]

> geneCount[1:10, 1:8]

geneSymbol normal normal.1 normal.2 normal.3 normal.4 normal.5 normal.6

1 RGS22 302 155 88 42 150 41 596

2 HPSE 210 184 400 339 407 131 457

3 BCAS4 296 251 316 275 369 256 444

4 TNFRSF8 39 68 112 55 120 74 40

5 CLEC3A 0 0 0 0 0 0 1

6 LRWD1 483 449 329 331 708 374 612

7 PAX6 105 119 117 105 153 130 119

8 NEK1 520 519 595 603 792 378 643

9 RPS6KB2 753 1228 827 846 1428 959 1262

10 ANKRD9 720 964 795 1070 1122 573 697
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Data processing

Filter out the nonexpressed genes.
For simplicity, we consider only the genes with an average read count
of 10 or more.

> means <- rowMeans(geneCount[,-1])

> filter <- means >= 10

> table(filter)

filter

FALSE TRUE

530 2470

#Exclude the genes with an average count less than 10,

# and delete the first column which is for gene name

> geneCountHigh <- geneCount[filter,-1]

> dim(geneCountHigh)

[1] 2470 112
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Library sizes

One of the main characteristics of RNA-seq data: the sequencing
depths or library size are varied

We can visualize the total number of mapped reads to known genes
with the barplot() function.

Further, to check for systematic effects we can color-code the plot by
different biological or technical variables.
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Total count of each sample

> library(RColorBrewer)

> colors <- brewer.pal(9, "Set1")

#We test the first 18 samples only.

> totCounts <- colSums(geneCountHigh[,1:18])

> barplot(totCounts, las=2, col=colors, main = "Total Counts")
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Total count of each sample
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The count distribution of each sample

The boxplot() function provides an easy way to visualize the
difference in distribution between each experiment.

> boxplot(log2(geneCountHigh[,1:18] + 1), las=2, col=colors, main

= "Log count distributions")
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The count distribution of each sample
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Building the edgeR object

DGEList() is the function that converts the count matrix into an
edgeR object.

DGEList() creates a object from a table of counts (rows=features,
columns=samples), group indicator for each column, library size
(optional) and a table of feature annotation (optional).

In addition to the counts, we need to group the samples according to
the variable of interest in our experiment. Here, we compare the
normal and tumor samples.
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The types of samples

DGEList(counts,lib.size, norm.factors, samples, group = NULL ...)

counts: numeric matrix of read counts.

group: vector or factor giving the experimental group/condition

for each sample

lib.size : numeric vector giving the total count (sequence depth)

for each library.

norm.factors: numeric vector of normalization factors that modify

the library sizes.
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The groups of samples

> colnames (geneCountHigh)

[1] "normal" "normal.1" "normal.2" "normal.3" "normal.4"

[6] "normal.5" "normal.6" "normal.7" "normal.8" "normal.9"

[11] "normal.10" "normal.11" "normal.12" "normal.13" "normal.14"

[16] "normal.15" "normal.16" "normal.17" "normal.18" "normal.19"

[21] "normal.20" "normal.21" "normal.22" "normal.23" "normal.24"

[26] "normal.25" "normal.26" "normal.27" "normal.28" "normal.29"

[31] "normal.30" "normal.31" "normal.32" "normal.33" "normal.34"

[36] "normal.35" "normal.36" "normal.37" "normal.38" "normal.39"

[41] "normal.40" "normal.41" "normal.42" "normal.43" "normal.44"

[46] "normal.45" "normal.46" "normal.47" "normal.48" "normal.49"

[51] "normal.50" "normal.51" "normal.52" "normal.53" "normal.54"

[56] "normal.55" "tumor" "tumor.1" "tumor.2" "tumor.3"

[61] "tumor.4" "tumor.5" "tumor.6" "tumor.7" "tumor.8"

[66] "tumor.9" "tumor.10" "tumor.11" "tumor.12" "tumor.13"

[71] "tumor.14" "tumor.15" "tumor.16" "tumor.17" "tumor.18"

[76] "tumor.19" "tumor.20" "tumor.21" "tumor.22" "tumor.23"

[81] "tumor.24" "tumor.25" "tumor.26" "tumor.27" "tumor.28"

[86] "tumor.29" "tumor.30" "tumor.31" "tumor.32" "tumor.33"

[91] "tumor.34" "tumor.35" "tumor.36" "tumor.37" "tumor.38"

[96] "tumor.39" "tumor.40" "tumor.41" "tumor.42" "tumor.43"

[101] "tumor.44" "tumor.45" "tumor.46" "tumor.47" "tumor.48"

[106] "tumor.49" "tumor.50" "tumor.51" "tumor.52" "tumor.53"

[111] "tumor.54" "tumor.55"
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Building the edgeR object

> counts = geneCountHigh

> group <- c(rep("normal", 56), rep("tumor", 56))

> cds <- DGEList(counts, group = group)

> class (cds)

[1] "DGEList"

attr(,"package")

[1] "edgeR"

#We can then see the elements that the object contains by using

names() function

> names(cds)

[1] "counts" "samples"
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Accessing the elements of an R object

> class (cds$counts)

[1] "matrix"

> class (cds$samples)

[1] "data.frame"

> head(cds$counts[,1:5])

normal normal.1 normal.2 normal.3 normal.4

1 302 155 88 42 150

2 210 184 400 339 407

3 296 251 316 275 369

4 39 68 112 55 120

6 483 449 329 331 708

7 105 119 117 105 153

> head(cds$samples)

group lib.size norm.factors

normal normal 4959458 1

normal.1 normal 6758098 1

normal.2 normal 5022197 1

normal.3 normal 5277385 1

normal.4 normal 9007296 1

normal.5 normal 6168404 1
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Normalization

Using TMM normalization to account for compositional difference
between the libraries

#Calculate normalization factors to scale the raw library sizes

> cds <- calcNormFactors(cds)

> head(cds$samples)

group lib.size norm.factors

normal normal 4959458 0.9051502

normal.1 normal 6758098 0.8496215

normal.2 normal 5022197 1.0444084

normal.3 normal 5277385 0.9892869

normal.4 normal 9007296 0.9742291

normal.5 normal 6168404 0.8026885
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Normalization

By default, the function calcNormFactors normalize the data using
the ”weighted trimmed mean of M-values” (TMM) method
Other options are RLE (relative log expression)and upper-quartile.
If we want to use the upper-quartile to normalize, we can add an
extra argument to the function.

#Calculate normalization factors to scale the raw library sizes

> cds <- calcNormFactors(cds, method="upperquartile")

> head(cds$samples)

group lib.size norm.factors

normal normal 4959458 0.9051568

normal.1 normal 6758098 0.8688050

normal.2 normal 5022197 1.0497513

normal.3 normal 5277385 1.0274628

normal.4 normal 9007296 0.9790930

normal.5 normal 6168404 0.8236127
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Variation

When assessing differential expression, it is important to model the
variability in the data appropriately

The negative binomial (NB) mode is used as more variation in
RNA-seq data than can be accounted for by the Poisson model
(called overdispersion).
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Variation

The dispersion parameter parameter is very important as it
determines model the variance for each gene is modeled.

The variance function for each gene is

V = mu ∗ (1 + dispersion ∗mu) (2)

where each gene has a distinct value for the mean (mu), which
corresponds to the abundance of that gene in the RNA sample
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Dispersion

The dispersion is essential for modelling the variance of each gene

Under the common dispersion model we use the same value for the
dispersion when modelling the variance for each gene.

Under a tagwise model we allow for a different value for the
dispersion to be used for each gene
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Estimate of the common dispersion

> cds <- estimateCommonDisp(cds)

> names(cds)

[1] "counts" "samples" "common.dispersion"

[4] "pseudo.counts" "pseudo.lib.size" "AveLogCPM"

> cds$common.dispersion

[1] 0.4116277
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Common dispersion

The square root of the common dispersion gives the coefficient of
variation of biological variation (BCV).

The BCV is the relative variability of expression between biological
replicates.

If you estimate dispersion = 0.41, then sqrt(dispersion) = BCV =
0.64.

Means that the expression values vary up and down by 64% between
replicates.
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Tagwise dispersion

The way edgeR estimates a tagwise (i.e. gene-wise) dispersion
parameter is by “shrinking” the gene-wise dispersions toward a
common value (the common dispersion estimated in the previous
step).

Alternatively, one can shrink the gene-wise estimates to a common
trend, by estimating a smooth function prior to the shrinkage (using
the estimateTrendedDisp() function)
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Tagwise dispersion

> cds <- estimateTagwiseDisp(cds)

> plotBCV(cds)

The gene-wise dispersions show a decreasing trend with expression level.
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Mean variance plot

Assess how well the estimated dispersion parameters fit the data by
plotting the mean-variance relationship.

meanVarPlot <− plotMeanVar(cdsG ,show.raw.vars=TRUE, show.tagwise.vars=TRUE
, show.binned.common.disp.vars=FALSE, show.ave.raw.vars=FALSE, NBline =
TRUE, nbins = 100, pch = 16,xlab =”Mean Expression (Log10 Scale)”, ylab = ”
Variance (Log10 Scale)”, main = ”Mean−Variance Plot”)

The plot function outputs the variances which will be stored in the data
set meanVarPlot
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Mean variance plot

raw variances of the counts
(grey dots)

variances using the tagwise
dispersions (light blue dots)

variances using the common
dispersion (solid blue line)

variance = mean poisson
variance (solid black line)
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Differential expression analysis

The function exactTest performs pair-wise tests for differential
expression between two groups. The important parameter is pair
which indicates which two groups should be compared.

> et <- exactTest(cds, pair = c("normal", "tumor"))

We need to provide gruop of the samples first. For instance,

normal versus tumor
control vs treated
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Differential expression analysis

> class (et)

[1] "DGEExact"

attr(,"package")

[1] "edgeR"

> names (et)

[1] "table" "comparison" "genes"
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Differential expression analysis

> et$comparison

[1] "normal" "tumor"

> head(et$table)

logFC logCPM PValue

1 -1.2620601 5.101380 1.928026e-12

2 0.3746115 5.796729 3.320407e-02

3 0.8842329 6.350847 5.712832e-07

4 0.5703152 4.426511 1.246751e-03

6 0.5075784 6.849094 3.877792e-03

7 -1.0192441 4.095199 1.183635e-08
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Table of the Top Differentially Expressed Tags

Extracts the top DE tags in a data frame for a given pair of groups,
ranked by p-value or absolute log-fold change.

topTags(object, n=10, adjust.method=”BH”, sort.by=”PValue”,
p.value=1)

object: a DGEExact object (output from exactTest)

n: scalar, number of tags to display/return

adjust.method: character string stating the method used to adjust p-values

for multiple testing, passed on to p.adjust

sort.by: character string, should the top tags be sorted by p-value

("PValue"), by absolute log-fold change ("logFC"),

or not sorted ("none").

p.value: cutoff value for adjusted p-values.
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Table of the Top Differentially Expressed Tags

> topTags(et)

Comparison of groups: tumor-normal

logFC logCPM PValue FDR

772 9.467071 10.356943 4.704334e-308 1.161971e-304

1321 8.114549 6.427723 2.244859e-241 2.772401e-238

2271 6.769685 4.713430 9.260237e-184 7.624262e-181

1336 6.327003 5.723981 4.597782e-173 2.839130e-170

2041 6.105740 8.197687 1.034280e-171 5.109343e-169

2994 6.917303 3.148385 1.590759e-161 6.548625e-159

2551 6.892310 2.791990 3.354682e-154 1.183724e-151

1314 8.772051 1.933639 2.103799e-152 6.495479e-150

1263 5.860897 4.261415 8.651641e-149 2.374395e-146

63 5.216740 7.828899 8.244542e-137 1.879656e-134
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Interpreting results

logFC: positive if gene expresses higher in tumor

log2(Fold Change) = log2( expression in tumor
expression in normal )

logCPM: log2(Counts Per Million)

FDR: False Discovrty Rate
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Extract Differentially Expressed (DE) Genes

> top <− topTags(et, n=nrow(cds$counts))$table
> class (top)
[1] ”data.frame”

#Store the gene symbol of the differentially expressed DE) genes
> de <− rownames(top[top$PValue<0.01,])

# generate the distribution of Pvalue
> hist(top$PValue, breaks=20)

t
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Extract Differentially Expressed (DE) Genes

We can use the ”volcano plot” to visualize the relationship between
log-fold-changes and p-values.

> plot(top$logFC,−log10(top$PValue), pch=20, cex=1.5, ylab=”−log10(p−value)”, xlab=”
logFC”, col=as.numeric(rownames(top) %in% de)+1)

> abline(v=c(−2, 2), col=”blue”)
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Save the DE results

> write.csv(top, file="DEGs_lung_cancer.csv")

> de_sig = top[top$PValue<0.01,]

> write.csv(de_sig, file="DEGs_lung_cancer_significant.csv")
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Summary: edgeR

Main steps

Building the edgeR object

Normalization

Estimating Dispersion

Testing for Differentially Expressed (DE)
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