
Seurat

2025-04-04

Contents
Setup the Seurat Object 1

What does data in a count matrix look like? . 2

Standard pre-processing workflow 3
QC and selecting cells for further analysis . 3

Normalizing the data 6
Apply sctransform normalization . 6

Identification of highly variable features (feature selection) 6

Scaling the data 7

Perform linear dimensional reduction 8

Determine the ‘dimensionality’ of the dataset 10

Cluster the cells 11

Run non-linear dimensional reduction (UMAP/tSNE) 12

Finding differentially expressed features (cluster biomarkers) 14
Visualizations of marker feature expression . 16
Additions to FeaturePlot . 21
Applying themes to plots . 26

Assigning cell type identity to clusters 30

Setup the Seurat Object
For this tutorial, we will be analyzing the a dataset of Peripheral Blood Mononuclear Cells (PBMC) freely
available from 10X Genomics. There are 2,700 single cells that were sequenced on the Illumina NextSeq 500.
The raw data can be found: https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_b
c_matrices.tar.gz

We start by reading in the data. The Read10X() function reads in the output of the cellranger pipeline
from 10X, returning a unique molecular identified (UMI) count matrix. The values in this matrix represent
the number of molecules for each feature (i.e. gene; row) that are detected in each cell (column). Note that
more recent versions of cellranger now also output using the h5 file format, which can be read in using the
Read10X_h5() function in Seurat.

We next use the count matrix to create a Seurat object. The object serves as a container that contains
both data (like the count matrix) and analysis (like PCA, or clustering results) for a single-cell dataset. For
example, in Seurat v5, the count matrix is stored in pbmc[[“RNA”]]$counts.

1

https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz

library(dplyr)

##
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
##
filter, lag

The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union
library(Seurat)

Loading required package: SeuratObject

Loading required package: sp

##
Attaching package: 'SeuratObject'

The following objects are masked from 'package:base':
##
intersect, t
library(patchwork)

library(ggplot2)
library(ggmin)

Load the PBMC dataset
IMPORTANT: Make sure this Rmd file is saved in the same folder as the "filtered_gene_bc_matrices" directory.
pbmc.data <- Read10X(data.dir = "filtered_gene_bc_matrices/hg19/")
Initialize the Seurat object with the raw (non-normalized data).
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)

Warning: Feature names cannot have underscores ('_'), replacing with dashes
('-')
pbmc

An object of class Seurat
13714 features across 2700 samples within 1 assay
Active assay: RNA (13714 features, 0 variable features)
1 layer present: counts

What does data in a count matrix look like?

Lets examine a few genes in the first thirty cells
pbmc.data[c("CD3D", "TCL1A", "MS4A1"), 1:30]

3 x 30 sparse Matrix of class "dgCMatrix"

[[suppressing 30 column names 'AAACATACAACCAC-1', 'AAACATTGAGCTAC-1', 'AAACATTGATCAGC-1' ...]]

##
CD3D 4 . 10 . . 1 2 3 1 . . 2 7 1 . . 1 3 . 2 3 3 4 1 5
TCL1A 1 1
MS4A1 . 6 1 1 1 36 1 2 . . 2

2

The . values in the matrix represent 0s (no molecules detected). Since most values in an scRNA-seq matrix
are 0, Seurat uses a sparse-matrix representation whenever possible. This results in significant memory and
speed savings for Drop-seq/inDrop/10x data.

Standard pre-processing workflow
The steps below encompass the standard pre-processing workflow for scRNA-seq data in Seurat. These
represent the selection and filtration of cells based on QC metrics, data normalization and scaling, and the
detection of highly variable features.

QC and selecting cells for further analysis
Seurat allows you to easily explore QC metrics and filter cells based on any user-defined criteria. A few QC
metrics commonly used by the community include:

• The number of unique genes detected in each cell.

– Low-quality cells or empty droplets will often have very few genes

– Cell doublets or multiplets may exhibit an aberrantly high gene count

• Similarly, the total number of molecules detected within a cell (correlates strongly with unique genes)

• The percentage of reads that map to the mitochondrial genome

– Low-quality / dying cells often exhibit extensive mitochondrial contamination

– We calculate mitochondrial QC metrics with the PercentageFeatureSet() function, which
calculates the percentage of counts originating from a set of features

– We use the set of all genes starting with MT- as a set of mitochondrial genes
The [[operator can add columns to object metadata. This is a great place to stash QC stats
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "ˆMT-")

Where are QC metrics stored in Seurat?

• The number of unique genes and total molecules are automatically calculated during CreateSeuratOb-
ject()
– You can find them stored in the object meta data

Show QC metrics for the first 5 cells
head(pbmc@meta.data, 5)

orig.ident nCount_RNA nFeature_RNA percent.mt
AAACATACAACCAC-1 pbmc3k 2419 779 3.0177759
AAACATTGAGCTAC-1 pbmc3k 4903 1352 3.7935958
AAACATTGATCAGC-1 pbmc3k 3147 1129 0.8897363
AAACCGTGCTTCCG-1 pbmc3k 2639 960 1.7430845
AAACCGTGTATGCG-1 pbmc3k 980 521 1.2244898

• orig.ident: The original identity or sample label for the cells.

• nCount_RNA: The total number of RNA molecules (UMIs) detected in each cell.

• nFeature_RNA: The number of genes detected in that same cell.

• percent.mt: The percentage of reads mapping to mitochondrial genes.

In the example below, we visualize QC metrics, and use these to filter cells.

3

• We filter cells that have unique feature counts over 2,500 or less than 200
• We filter cells that have >5% mitochondrial counts

Visualize QC metrics as a violin plot
plot_before_QC = VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

Warning: Default search for "data" layer in "RNA" assay yielded no results;
utilizing "counts" layer instead.
plot_before_QC

1000

2000

3000

pb
m

c3
k

Identity

nFeature_RNA

0

5000

10000

15000

pb
m

c3
k

Identity

nCount_RNA

0

5

10

15

20

pb
m

c3
k

Identity

percent.mt

FeatureScatter is typically used to visualize feature-feature relationships, but can be used
for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
These plots help to identify poor-quality cells or doublets. Cells with high `nCount_RNA` but low `nFeature_RNA` may be problematic.

plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")
plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
plot1 + plot2

4

0

5

10

15

20

0 5000 10000 15000
nCount_RNA

pe
rc

en
t.m

t

Identity

pbmc3k

−0.13

1000

2000

3000

0 5000 10000 15000
nCount_RNA

nF
ea

tu
re

_R
N

A

Identity

pbmc3k

0.95

pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)

Visualize QC metrics before and after QC

plot_after_QC <- VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

Warning: Default search for "data" layer in "RNA" assay yielded no results;
utilizing "counts" layer instead.
plot_before_QC / plot_after_QC

1000

2000

3000

pb
m

c3
k

Identity

nFeature_RNA

0

5000

10000

15000

pb
m

c3
k

Identity

nCount_RNA

0

5

10

15

20

pb
m

c3
k

Identity

percent.mt

500

1000

1500

2000

2500

pb
m

c3
k

Identity

nFeature_RNA

2500

5000

7500

pb
m

c3
k

Identity

nCount_RNA

0

1

2

3

4

5

pb
m

c3
k

Identity

percent.mt

5

Normalizing the data
After removing unwanted cells from the dataset, the next step is to normalize the data. By default, we employ
a global-scaling normalization method “LogNormalize” that normalizes the feature expression measurements
for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms
the result. In Seurat v5, Normalized values are stored in pbmc[[“RNA”]]$data.
pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)

Normalizing layer: counts

For clarity, in this previous line of code (and in future commands), we provide the default values for certain
parameters in the function call. However, this isn’t required and the same behavior can be achieved the
following code.
pbmc <- NormalizeData(pbmc)

Normalizing layer: counts

While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies
on an assumption that each cell originally contains the same number of RNA molecules.

• “normalization.method”: Method for normalization.
– “LogNormalize”: Feature counts for each cell are divided by the total counts for that cell and

multiplied by the scale.factor. This is then natural-log transformed using log1p
– “CLR”: Applies a centered log ratio transformation
– “RC”: Relative counts. Feature counts for each cell are divided by the total counts for that cell

and multiplied by the scale.factor. No log-transformation is applied. For counts per million (CPM)
set scale.factor = 1e6

• While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling
relies on an assumption that each cell originally contains the same number of RNA molecules.

• There is an alternative workflows for the single cell preprocessing that do not make these assumptions:
SCTransform() normalization workflow. The use of SCTransform replaces the need to run NormalizeData,
FindVariableFeatures, or ScaleData (described below.)

Apply sctransform normalization
• Note that this single command replaces NormalizeData(), ScaleData(), and FindVariableFeatures().
• Transformed data will be available in the SCT assay, which is set as the default after running sctransform
• During normalization, we can also remove confounding sources of variation, for example, mitochondrial

mapping percentage
run sctransform
#pbmc <- SCTransform(pbmc, vars.to.regress = "percent.mt", verbose = FALSE)

Identification of highly variable features (feature selection)
We next calculate a subset of features that exhibit high cell-to-cell variation in the dataset (i.e, they are
highly expressed in some cells, and lowly expressed in others). We found that focusing on these genes in
downstream analysis helps to highlight biological signal in single-cell datasets.

By default, we return 2,000 features per dataset. These will be used in downstream analysis, like PCA.
pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)

Finding variable features for layer counts

6

Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(pbmc), 10)
top10

[1] "PPBP" "LYZ" "S100A9" "IGLL5" "GNLY" "FTL" "PF4" "FTH1"
[9] "GNG11" "S100A8"
plot variable features with and without labels
plot1 <- VariableFeaturePlot(pbmc)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)

When using repel, set xnudge and ynudge to 0 for optimal results
plot1 + plot2

Warning in scale_x_log10(): log-10 transformation introduced infinite values.
log-10 transformation introduced infinite values.

0

3

6

9

1e−02 1e+00 1e+02
Average Expression

S
ta

nd
ar

di
ze

d
V

ar
ia

nc
e

Non−variable count: 11714
Variable count: 2000

PPBP

LYZ
S100A9

IGLL5
GNLY FTL

PF4
FTH1

GNG11 S100A8

0

3

6

9

1e−02 1e+00 1e+02
Average Expression

S
ta

nd
ar

di
ze

d
V

ar
ia

nc
e

Non−variable count: 11714
Variable count: 2000

Scaling the data
Next, we apply a linear transformation (‘scaling’) that is a standard pre-processing step prior to dimensional
reduction techniques like PCA. The ScaleData() function:

• Shifts the expression of each gene, so that the mean expression across cells is 0
• Scales the expression of each gene, so that the variance across cells is 1

– This step gives equal weight in downstream analyses, so that highly-expressed genes do not
dominate

• The results of this are stored in pbmc[[“RNA”]]$scale.data
• By default, only variable features are scaled.
• You can specify the features argument to scale additional features

all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)

Centering and scaling data matrix

7

Perform linear dimensional reduction
Next we perform PCA on the scaled data. By default, only the previously determined variable features are
used as input, but can be defined using features argument if you wish to choose a different subset (if you do
want to use a custom subset of features, make sure you pass these to ScaleData first).

For the first principal components, Seurat outputs a list of genes with the most positive and negative loadings,
representing modules of genes that exhibit either correlation (or anti-correlation) across single-cells in the
dataset.
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))

PC_ 1
Positive: CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP
FCER1G, CFD, LGALS1, S100A8, CTSS, LGALS2, SERPINA1, IFITM3, SPI1, CFP
PSAP, IFI30, SAT1, COTL1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD
Negative: MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CD27, STK17A, CTSW
CD247, GIMAP5, AQP3, CCL5, SELL, TRAF3IP3, GZMA, MAL, CST7, ITM2A
MYC, GIMAP7, HOPX, BEX2, LDLRAP1, GZMK, ETS1, ZAP70, TNFAIP8, RIC3
PC_ 2
Positive: CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74
HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1, FCRLA, HVCN1, LTB
BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, C16orf74
Negative: NKG7, PRF1, CST7, GZMB, GZMA, FGFBP2, CTSW, GNLY, B2M, SPON2
CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX
TTC38, APMAP, CTSC, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC
PC_ 3
Positive: HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1, HLA-DPA1, CD74, MS4A1, HLA-DRB1, HLA-DRA
HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8
PLAC8, BLNK, MALAT1, SMIM14, PLD4, LAT2, IGLL5, P2RX5, SWAP70, FCGR2B
Negative: PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU
HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1
NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, MPP1, CMTM5, RP11-367G6.3, MYL9, GP1BA
PC_ 4
Positive: HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, PF4, TCL1A
SDPR, HLA-DPA1, HLA-DRB1, HLA-DQA2, HLA-DRA, PPBP, LINC00926, GNG11, HLA-DRB5, SPARC
GP9, AP001189.4, CA2, PTCRA, CD9, NRGN, RGS18, GZMB, CLU, TUBB1
Negative: VIM, IL7R, S100A6, IL32, S100A8, S100A4, GIMAP7, S100A10, S100A9, MAL
AQP3, CD2, CD14, FYB, LGALS2, GIMAP4, ANXA1, CD27, FCN1, RBP7
LYZ, S100A11, GIMAP5, MS4A6A, S100A12, FOLR3, TRABD2A, AIF1, IL8, IFI6
PC_ 5
Positive: GZMB, NKG7, S100A8, FGFBP2, GNLY, CCL4, CST7, PRF1, GZMA, SPON2
GZMH, S100A9, LGALS2, CCL3, CTSW, XCL2, CD14, CLIC3, S100A12, CCL5
RBP7, MS4A6A, GSTP1, FOLR3, IGFBP7, TYROBP, TTC38, AKR1C3, XCL1, HOPX
Negative: LTB, IL7R, CKB, VIM, MS4A7, AQP3, CYTIP, RP11-290F20.3, SIGLEC10, HMOX1
PTGES3, LILRB2, MAL, CD27, HN1, CD2, GDI2, ANXA5, CORO1B, TUBA1B
FAM110A, ATP1A1, TRADD, PPA1, CCDC109B, ABRACL, CTD-2006K23.1, WARS, VMO1, FYB

Seurat provides several useful ways of visualizing both cells and features that define the PCA, including
VizDimReduction(), DimPlot(), and DimHeatmap()
Examine and visualize PCA results a few different ways
print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)

PC_ 1
Positive: CST3, TYROBP, LST1, AIF1, FTL
Negative: MALAT1, LTB, IL32, IL7R, CD2

8

PC_ 2
Positive: CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1
Negative: NKG7, PRF1, CST7, GZMB, GZMA
PC_ 3
Positive: HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1
Negative: PPBP, PF4, SDPR, SPARC, GNG11
PC_ 4
Positive: HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1
Negative: VIM, IL7R, S100A6, IL32, S100A8
PC_ 5
Positive: GZMB, NKG7, S100A8, FGFBP2, GNLY
Negative: LTB, IL7R, CKB, VIM, MS4A7
VizDimLoadings(pbmc, dims = 1:2, reduction = "pca")

MALAT1
GSTP1

LGALS3
GRN

NPC2
S100A11

COTL1
SAT1
IFI30

PSAP
CFP
SPI1

IFITM3
SERPINA1

LGALS2
CTSS

S100A8
LGALS1

CFD
FCER1G

TYMP
S100A9

FCN1
LYZ

FTH1
FTL

AIF1
LST1

TYROBP
CST3

−0.10−0.05 0.00 0.05 0.10
PC_1

NKG7
PRF1
CST7

GZMB
GZMA

FGFBP2
CTSW
GNLY
B2M

SPON2
CCL4

GZMH
FCGR3A

CCL5
CD247

XCL2
CLIC3

AKR1C3
SRGN
HOPX
TTC38

APMAP
CD79B

LINC00926
HLA−DRA

HLA−DQB1
HLA−DQA1

TCL1A
MS4A1
CD79A

−0.1 0.0 0.1
PC_2

DimPlot(pbmc, reduction = "pca") + NoLegend()

9

−10

0

10

0 10
PC_1

P
C

_2

Determine the ‘dimensionality’ of the dataset
To overcome the extensive technical noise in any single feature for scRNA-seq data, Seurat clusters cells
based on their PCA scores, with each PC essentially representing a ‘metafeature’ that combines information
across a correlated feature set. The top principal components therefore represent a robust compression of the
dataset. However, how many components should we choose to include? 10? 20? 100?

We generates an ‘Elbow plot’: a ranking of principle components based on the percentage of variance explained
by each one (ElbowPlot() function). In this example, we can observe an ‘elbow’ around PC9-10, suggesting
that the majority of true signal is captured in the first 10 PCs.
ElbowPlot(pbmc)

10

2

3

4

5

6

7

5 10 15 20
PC

S
ta

nd
ar

d
D

ev
ia

tio
n

Identifying the true dimensionality of a dataset – can be challenging/uncertain for the user. We therefore
suggest these multiple approaches for users. The first is more supervised, exploring PCs to determine relevant
sources of heterogeneity, and could be used in conjunction with GSEA for example. The second (ElbowPlot)
The third is a heuristic that is commonly used, and can be calculated instantly. In this example, we might
have been justified in choosing anything between PC 7-12 as a cutoff.

We chose 10 here, but encourage users to consider the following:

• Dendritic cell and NK aficionados may recognize that genes strongly associated with PCs 12 and 13
define rare immune subsets (i.e. MZB1 is a marker for plasmacytoid DCs). However, these groups are
so rare, they are difficult to distinguish from background noise for a dataset of this size without prior
knowledge.

• We encourage users to repeat downstream analyses with a different number of PCs (10, 15, or even 50!).
As you will observe, the results often do not differ dramatically.

• We advise users to err on the higher side when choosing this parameter. For example, performing
downstream analyses with only 5 PCs does significantly and adversely affect results.

Cluster the cells
Seurat applies a graph-based clustering approach. Importantly, the distance metric which drives the clustering
analysis (based on previously identified PCs) remains the same. However, our approach to partitioning the
cellular distance matrix into clusters has dramatically improved. Briefly, these methods embed cells in a
graph structure - for example a K-nearest neighbor (KNN) graph, with edges drawn between cells with similar
feature expression patterns, and then attempt to partition this graph into highly interconnected ‘quasi-cliques’
or ‘communities’.

We first construct a KNN graph based on the euclidean distance in PCA space, and refine the edge weights
between any two cells based on the shared overlap in their local neighborhoods (Jaccard similarity). This step

11

is performed using the FindNeighbors() function, and takes as input the previously defined dimensionality of
the dataset (first 10 PCs).

To cluster the cells, we next apply modularity optimization techniques such as the Louvain algorithm (default)
or SLM, to iteratively group cells together, with the goal of optimizing the standard modularity function.
The FindClusters() function implements this procedure, and contains a resolution parameter that sets the
‘granularity’ of the downstream clustering, with increased values leading to a greater number of clusters.
We find that setting this parameter between 0.4-1.2 typically returns good results for single-cell datasets of
around 3K cells. Optimal resolution often increases for larger datasets. The clusters can be found using the
Idents() function.
pbmc <- FindNeighbors(pbmc, dims = 1:10)

Computing nearest neighbor graph

Computing SNN
pbmc <- FindClusters(pbmc, resolution = 0.5)

Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
Number of nodes: 2638
Number of edges: 95965
##
Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8723
Number of communities: 9
Elapsed time: 0 seconds
Look at cluster IDs of the first 5 cells
head(Idents(pbmc), 5)

AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1
2 3 2 1
AAACCGTGTATGCG-1
6
Levels: 0 1 2 3 4 5 6 7 8

Run non-linear dimensional reduction (UMAP/tSNE)
Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP, to visualize and
explore these datasets. The goal of these algorithms is to learn underlying structure in the dataset, in order
to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within
graph-based clusters determined above should co-localize on these dimension reduction plots.

While we and others have routinely found 2D visualization techniques like tSNE and UMAP to be valuable
tools for exploring datasets, all visualization techniques have limitations, and cannot fully represent the
complexity of the underlying data. In particular, these methods aim to preserve local distances in the dataset
(i.e. ensuring that cells with very similar gene expression profiles co-localize), but often do not preserve more
global relationships. We encourage users to leverage techniques like UMAP for visualization, but to avoid
drawing biological conclusions solely on the basis of visualization techniques.
pbmc <- RunUMAP(pbmc, dims = 1:10)

Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session

12

21:14:40 UMAP embedding parameters a = 0.9922 b = 1.112

21:14:40 Read 2638 rows and found 10 numeric columns

21:14:40 Using Annoy for neighbor search, n_neighbors = 30

21:14:40 Building Annoy index with metric = cosine, n_trees = 50

0% 10 20 30 40 50 60 70 80 90 100%

[----|----|----|----|----|----|----|----|----|----|

**|
21:14:40 Writing NN index file to temp file /var/folders/wk/p4zj4_993czf2pnjs015dffm0000gp/T//RtmpfVRIEo/filef79026121344
21:14:40 Searching Annoy index using 1 thread, search_k = 3000
21:14:41 Annoy recall = 100%
21:14:42 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
21:14:43 Initializing from normalized Laplacian + noise (using RSpectra)
21:14:43 Commencing optimization for 500 epochs, with 105124 positive edges
21:14:49 Optimization finished
note that you can set `label = TRUE` or use the LabelClusters function to help label
individual clusters
DimPlot(pbmc, reduction = "umap")

−5

0

5

10

15

−10 −5 0 5 10
umap_1

um
ap

_2

0
1
2
3
4
5
6
7
8

DimPlot(pbmc, reduction = "umap", label = T)

13

2

3

1

6
4 0

5

7

8

−5

0

5

10

15

−10 −5 0 5 10
umap_1

um
ap

_2

0
1
2
3
4
5
6
7
8

Finding differentially expressed features (cluster biomarkers)
Seurat can help you find markers that define clusters via differential expression (DE). By default, Seurat
performs differential expression (DE) testing based on the non-parametric Wilcoxon rank sum test. It
identifies positive and negative markers of a single cluster (specified in ident.1), compared to specific groups
of cells (ident.2). FindAllMarkers() automates this process for all clusters, but you can also test groups of
clusters vs. each other, or against all cells.
find all markers of cluster 2 (cluster ID in the above UMAP figure)
cluster2.markers <- FindMarkers(pbmc, ident.1 = 2)
head(cluster2.markers, n = 5)

p_val avg_log2FC pct.1 pct.2 p_val_adj
IL32 2.593535e-91 1.3221171 0.949 0.466 3.556774e-87
LTB 7.994465e-87 1.3450377 0.981 0.644 1.096361e-82
CD3D 3.922451e-70 1.0562099 0.922 0.433 5.379250e-66
IL7R 1.130870e-66 1.4256944 0.748 0.327 1.550876e-62
LDHB 4.082189e-65 0.9765875 0.953 0.614 5.598314e-61

The results data frame has the following columns :

• p_val : p-value (unadjusted)
• avg_log2FC : log fold-change of the average expression between the two groups. Positive values indicate

that the feature is more highly expressed in the first group.
• pct.1 : The percentage of cells where the feature is detected in the first group
• pct.2 : The percentage of cells where the feature is detected in the second group
• p_val_adj : Adjusted p-value, based on Bonferroni correction using all features in the dataset.

If the ident.2 parameter is omitted or set to NULL, FindMarkers() will test for differentially expressed features

14

between the group specified by ident.1 and all other cells. Additionally, the parameter only.pos can be set to
TRUE to only search for positive markers, i.e. features that are more highly expressed in the ident.1 group.
cluster2.markers <- FindMarkers(pbmc, ident.1 = 2, ident.2 = NULL, only.pos = TRUE)
head(cluster2.markers, n = 5)

p_val avg_log2FC pct.1 pct.2 p_val_adj
IL32 2.593535e-91 1.3221171 0.949 0.466 3.556774e-87
LTB 7.994465e-87 1.3450377 0.981 0.644 1.096361e-82
CD3D 3.922451e-70 1.0562099 0.922 0.433 5.379250e-66
IL7R 1.130870e-66 1.4256944 0.748 0.327 1.550876e-62
LDHB 4.082189e-65 0.9765875 0.953 0.614 5.598314e-61
find all markers distinguishing cluster 5 from clusters 0 and 3
cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3))
head(cluster5.markers, n = 5)

p_val avg_log2FC pct.1 pct.2 p_val_adj
FCGR3A 2.150929e-209 6.832372 0.975 0.039 2.949784e-205
IFITM3 6.103366e-199 6.181000 0.975 0.048 8.370156e-195
CFD 8.891428e-198 6.052575 0.938 0.037 1.219370e-193
CD68 2.374425e-194 5.493138 0.926 0.035 3.256286e-190
RP11-290F20.3 9.308287e-191 6.335402 0.840 0.016 1.276538e-186
find markers for every cluster compared to all remaining cells, report only the positive ones
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE)

Calculating cluster 0

Calculating cluster 1

Calculating cluster 2

Calculating cluster 3

Calculating cluster 4

Calculating cluster 5

Calculating cluster 6

Calculating cluster 7

Calculating cluster 8
pbmc.markers %>%

group_by(cluster) %>%
dplyr::filter(avg_log2FC > 1)

A tibble: 7,046 x 7
Groups: cluster [9]
p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
<dbl> <dbl> <dbl> <dbl> <dbl> <fct> <chr>
1 1.74e-109 1.19 0.897 0.593 2.39e-105 0 LDHB
2 1.17e- 83 2.37 0.435 0.108 1.60e- 79 0 CCR7
3 8.94e- 79 1.09 0.838 0.403 1.23e- 74 0 CD3D
4 3.05e- 53 1.02 0.722 0.399 4.19e- 49 0 CD3E
5 3.28e- 49 2.10 0.333 0.103 4.50e- 45 0 LEF1
6 6.66e- 49 1.25 0.623 0.358 9.13e- 45 0 NOSIP
7 9.31e- 44 2.02 0.328 0.11 1.28e- 39 0 PRKCQ-AS1
8 4.69e- 43 1.53 0.435 0.184 6.43e- 39 0 PIK3IP1

15

9 1.47e- 39 2.70 0.195 0.04 2.01e- 35 0 FHIT
10 2.44e- 33 1.94 0.262 0.087 3.34e- 29 0 MAL
i 7,036 more rows

Seurat has several tests for differential expression which can be set with the test.use parameter:

• “wilcox” : Wilcoxon rank sum test (default, using ‘presto’ package)
• “wilcox_limma” : Wilcoxon rank sum test (using ‘limma’ package)
• “bimod” : Likelihood-ratio test for single cell feature expression, (McDavid et al., Bioinformatics, 2013)
• “roc” : Standard AUC classifier
• “t” : Student’s t-test
• “poisson” : Likelihood ratio test assuming an underlying negative binomial distribution. Use only for

UMI-based datasets
• “negbinom” : Likelihood ratio test assuming an underlying negative binomial distribution. Use only for

UMI-based datasets
• “LR” : Uses a logistic regression framework to determine differentially expressed genes. Constructs a

logistic regression model predicting group membership based on each- feature individually and compares
this to a null model with a likelihood ratio test.

• “MAST” : GLM-framework that treates cellular detection rate as a covariate (Finak et al, Genome
Biology, 2015) (Installation instructions)

• “DESeq2” : DE based on a model using the negative binomial distribution (Love et al, Genome Biology,
2014) (Installation instructions) For MAST and DESeq2, please ensure that these packages are installed
separately in order to use them as part of Seurat. Once installed, use the test.use parameter can be
used to specify which DE test to use.

For example, the ROC test returns the ‘classification power’ for any individual marker (ranging from 0 -
random, to 1 - perfect).
cluster0.markers <- FindMarkers(pbmc, ident.1 = 0, logfc.threshold = 0.25, test.use = "roc", only.pos = TRUE)

Visualizations of marker feature expression
We include several tools for visualizing marker expression. VlnPlot() (shows expression probability distributions
across clusters), and FeaturePlot() (visualizes feature expression on a tSNE or PCA plot) are our most
commonly used visualizations.
feature_genes = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A")

Violin plot - Visualize single cell expression distributions in each cluster
VlnPlot(pbmc, features = feature_genes)

16

0

1

2

3

4

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l
MS4A1

0

2

4

6

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l

GNLY

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l

CD3E

0

1

2

3

4

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l

CD14

0

1

2

3

4

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l
FCER1A

0

1

2

3

4

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l

FCGR3A

0

2

4

6

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l

LYZ

0

2

4

6

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l

PPBP

0

1

2

3

0 1 2 3 4 5 6 7 8
Identity

E
xp

re
ss

io
n

Le
ve

l
CD8A

Ridge Plot - show the distribution of expression values for each gene across all clusters. These are useful for comparing expression patterns across multiple cell types.

RidgePlot(pbmc, features = feature_genes, ncol = 2)

Picking joint bandwidth of 0.0236

Picking joint bandwidth of 0.0971

Picking joint bandwidth of 0.125

Picking joint bandwidth of 0.0337

Picking joint bandwidth of 0.0659

Picking joint bandwidth of 0.0872

Picking joint bandwidth of 0.319

17

Picking joint bandwidth of 0.033

Picking joint bandwidth of 0.0368

0
1
2
3
4
5
6
7
8

0 1 2 3 4

Expression Level

Id
en

tit
y

MS4A1

0
1
2
3
4
5
6
7
8

0 2 4 6

Expression Level

Id
en

tit
y

GNLY

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5

Expression Level

Id
en

tit
y

CD3E

0
1
2
3
4
5
6
7
8

0 1 2 3 4

Expression Level

Id
en

tit
y

CD14

0
1
2
3
4
5
6
7
8

0 1 2 3 4

Expression Level

Id
en

tit
y

FCER1A

0
1
2
3
4
5
6
7
8

0 1 2 3 4

Expression Level

Id
en

tit
y

FCGR3A

0
1
2
3
4
5
6
7
8

0 2 4 6

Expression Level

Id
en

tit
y

LYZ

0
1
2
3
4
5
6
7
8

0 2 4 6

Expression Level

Id
en

tit
y

PPBP

0
1
2
3
4
5
6
7
8

0 1 2 3

Expression Level

Id
en

tit
y

CD8A

Dot Plot- visualizes both the percentage of expressing cells (dot size) and the average expression level (dot color) for selected features across clusters.
feature in each cluster. The color represents the average expression level
DotPlot(pbmc, features = feature_genes) + RotatedAxis()

18

0

1

2

3

4

5

6

7

8

M
S4A

1
GNLY

CD3E
CD14

FCER1A

FCGR3A LY
Z

PPBP
CD8A

Features

Id
en

tit
y

Average Expression

0

1

2

Percent Expressed

0
25
50
75
100

Single cell heatmap of feature expression
DoHeatmap(subset(pbmc, downsample = 100), features = feature_genes, size = 3)

0 1 2 3 4 5 6 7 8

CD8A

PPBP

LYZ

FCGR3A

FCER1A

CD14

CD3E

GNLY

MS4A1 Expression

0

1

2

Identity

0

1

2

3

4

5

6

7

8

DoHeatmap() generates an expression heatmap for given cells and features. In this case, we are plotting the
top 20 markers (or all markers if less than 20) for each cluster.

19

Top 10 markers per cluster heatmap
pbmc.markers %>%

group_by(cluster) %>%
dplyr::filter(avg_log2FC > 1) %>%
slice_head(n = 10) %>%
ungroup() -> top10

DoHeatmap(pbmc, features = top10$gene) + NoLegend()

0 1 2 3 4 5 6 7 8

HGDCLDN5TREML1PTCRASEPT5LY6G6FTMEM40ITGA2BAP001189.4GP9RP6−91H8.3PKIBGAS6CD1CCLEC4CCLIC2ENHOCLEC10ASERPINF1FCER1AKLRD1XCL2GNLYCLIC3AKR1C3PRF1SPON2FGFBP2GZMBPILRAMS4A4AIFITM3LILRA3CKBFCGR3AMS4A7RP11−290F20.3HES4CDKN1CLYARGZMHCD8AKLRG1CTSWGZMKGZMACST7NKG7CCL5HLA−DRACD74HLA−DQB1VPREB3HLA−DQA1TCL1ALINC00926CD79BMS4A1CD79ASPOCK2TRAT1TNFRSF4AQP3CD2IL7RLTBIL32TYMPLYZCST3MS4A6ATYROBPCD14S100A9FCN1LGALS2S100A8MALFHITPIK3IP1PRKCQ−AS1NOSIPLEF1CD3ECD3DCCR7LDHB

Feature plot - visualize feature expression in low-dimensional space
FeaturePlot(pbmc, features = feature_genes)

20

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

1

2

3

4

MS4A1

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

2

4

6

GNLY

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0
1
2
3
4

CD3E

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

1

2

3

CD14

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

1

2

3

4

FCER1A

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

1

2

3

4

FCGR3A

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

2

4

6

LYZ

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

2

4

6

PPBP

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

1

2

3

CD8A

Additions to FeaturePlot

Plot a legend to map colors to expression levels
FeaturePlot(pbmc, features = "MS4A1")

21

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

0

1

2

3

4

MS4A1

Adjust the contrast in the plot
FeaturePlot(pbmc, features = "MS4A1", min.cutoff = 1, max.cutoff = 3)

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

1.0

1.5

2.0

2.5

3.0

MS4A1

22

Visualize co-expression of two features simultaneously
FeaturePlot(pbmc, features = c("MS4A1", "CD79A"), blend = TRUE)

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

MS4A1

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

CD79A

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

MS4A1_CD79A

2.5

5.0

7.5

10.0

2 4 6 8 10
MS4A1

C
D

79
A

Color threshold: 0.5

Split visualization to view expression by groups (replaces FeatureHeatmap)
pbmc$groups <- sample(c("group1", "group2"), size = ncol(pbmc), replace = TRUE)
FeaturePlot(pbmc, features = c("MS4A1", "CD79A"), split.by = "groups")

23

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2
group1

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

M
S

4A
1

group2

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

−5

0

5

10

15

−10 −5 0 5 10 15
umap_1

um
ap

_2

C
D

79A

Violin plots can also be split on some variable. Simply add the splitting variable to object
metadata and pass it to the split.by argument
VlnPlot(pbmc, features = "percent.mt", split.by = "groups")

The default behaviour of split.by has changed.
Separate violin plots are now plotted side-by-side.
To restore the old behaviour of a single split violin,
set split.plot = TRUE.
##
This message will be shown once per session.

24

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8
Identity

group1
group2

percent.mt

SplitDotPlotGG has been replaced with the `split.by` parameter for DotPlot
DotPlot(pbmc, features = feature_genes, split.by = "groups") + RotatedAxis()

25

0_group2

0_group1

1_group2

1_group1

2_group2

2_group1

3_group2

3_group1

4_group2

4_group1

5_group2

5_group1

6_group2

6_group1

7_group2

7_group1

8_group2

8_group1

M
S4A

1
GNLY

CD3E
CD14

FCER1A

FCGR3A LY
Z

PPBP
CD8A

Features

S
pl

it
Id

en
tit

y Percent Expressed

0
25
50
75
100

Applying themes to plots
With Seurat, all plotting functions return ggplot2-based plots by default, allowing one to easily capture and
manipulate plots just like any other ggplot2-based plot.
library(ggplot2)

baseplot <- DimPlot(pbmc, reduction = "umap")

Customize the plot using ggplot2 layers
baseplot +
labs(title = "Clustering of 2,700 PBMCs", x = "UMAP 1", y = "UMAP 2") + # Add title and axis labels
theme(
plot.title = element_text(size = 18, face = "bold", hjust = 0.5), # Title font size, bold, centered

26

axis.title = element_text(size = 14), # Axis label size
axis.text = element_text(size = 12), # Tick label size
legend.title = element_text(size = 14), # Legend title size
legend.text = element_text(size = 12) # Legend item text size

) +
guides(colour = guide_legend(override.aes = list(size = 5))) # Increase dot size in legend

−5

0

5

10

15

−10 −5 0 5 10
UMAP 1

U
M

A
P

 2

0
1
2
3
4
5
6
7
8

Clustering of 2,700 PBMCs

Use community-created themes, overwriting the default Seurat-applied theme Install ggmin
with remotes::install_github('sjessa/ggmin')

#remotes::install_github('sjessa/ggmin')

baseplot + ggmin::theme_powerpoint()

27

−5

0

5

10

15

−10 −5 0 5 10

umap_1

um
ap

_2

0
1
2
3
4
5
6
7
8

Seurat also provides several built-in themes, such as DarkTheme; for more details see
?SeuratTheme
baseplot + DarkTheme()

28

−5

0

5

10

15

−10 −5 0 5 10
umap_1

um
ap

_2

0

1

2

3

4

5

6

7

8

Other theme:

• theme_minimal() # Cleaner white background
• theme_classic() # No gridlines
• theme_void() # No axes at all (for minimalist look)

Chain themes together
baseplot + FontSize(x.title = 20, y.title = 20) + NoLegend()

29

−5

0

5

10

15

−10 −5 0 5 10

umap_1

um
ap

_2

Assigning cell type identity to clusters
Fortunately in the case of this dataset, we can use canonical markers to easily match the unbiased clustering
to known cell types:

Cluster ID Markers Cell Type
0 IL7R, CCR7 Naive CD4+ T
1 CD14, LYZ CD14+ Mono
2 IL7R, S100A4 Memory CD4+ T
3 MS4A1 B
4 CD8A CD8+ T
5 FCGR3A, MS4A7 FCGR3A+ Mono
6 GNLY, NKG7 NK
7 FCER1A, CST3 DC
8 PPBP Platelet

new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono",
"NK", "DC", "Platelet")

names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) # + NoLegend()

30

Memory CD4 T

B

CD14+ Mono

NK
CD8 T Naive CD4 T

FCGR3A+ Mono

DC

Platelet

−5

0

5

10

15

−10 −5 0 5 10
umap_1

um
ap

_2

Naive CD4 T
CD14+ Mono
Memory CD4 T
B
CD8 T
FCGR3A+ Mono
NK
DC
Platelet

library(ggplot2)
plot <- DimPlot(pbmc, reduction = "umap", label = TRUE, label.size = 4.5) + xlab("UMAP 1") + ylab("UMAP 2") +

theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) + guides(colour = guide_legend(override.aes = list(size = 10)))
#ggsave(filename = "./pbmc3k_umap.jpg", height = 7, width = 12, plot = plot, quality = 50)
ggsave(filename = "pbmc3k_umap.jpg", height = 7, width = 12, plot = plot, quality = 50)

saveRDS(pbmc, file = "./pbmc3k_final.rds")

31

	Setup the Seurat Object
	What does data in a count matrix look like?

	Standard pre-processing workflow
	QC and selecting cells for further analysis

	Normalizing the data
	Apply sctransform normalization

	Identification of highly variable features (feature selection)
	Scaling the data
	Perform linear dimensional reduction
	Determine the `dimensionality' of the dataset
	Cluster the cells
	Run non-linear dimensional reduction (UMAP/tSNE)
	Finding differentially expressed features (cluster biomarkers)
	Visualizations of marker feature expression
	Additions to FeaturePlot
	Applying themes to plots

	Assigning cell type identity to clusters

