Seurat

2025-04-04
Contents
Setup the Seurat Object 1
What does data in a count matrix look like? 2
Standard pre-processing workflow 3
QC and selecting cells for further analysis o 3
Normalizing the data 6
Apply sctransform normalization Lo 0L L 6
Identification of highly variable features (feature selection) 6
Scaling the data 7
Perform linear dimensional reduction 8
Determine the ‘dimensionality’ of the dataset 10
Cluster the cells 11
Run non-linear dimensional reduction (UMAP /tSNE) 12
Finding differentially expressed features (cluster biomarkers) 14
Visualizations of marker feature expression oL L oo 16
Additions to FeaturePlot L 21
Applying themes to plots L L 26
Assigning cell type identity to clusters 30

Setup the Seurat Object

For this tutorial, we will be analyzing the a dataset of Peripheral Blood Mononuclear Cells (PBMC) freely
available from 10X Genomics. There are 2,700 single cells that were sequenced on the Illumina NextSeq 500.
The raw data can be found: https://cf.10xgenomics.com/samples/cell/pbme3k/pbme3k_ filtered gene b
c_ matrices.tar.gz

We start by reading in the data. The Read10X() function reads in the output of the cellranger pipeline
from 10X, returning a unique molecular identified (UMI) count matrix. The values in this matrix represent
the number of molecules for each feature (i.e. gene; row) that are detected in each cell (column). Note that
more recent versions of cellranger now also output using the h5 file format, which can be read in using the
Read10X__h5() function in Seurat.

We next use the count matrix to create a Seurat object. The object serves as a container that contains
both data (like the count matrix) and analysis (like PCA, or clustering results) for a single-cell dataset. For
example, in Seurat v5, the count matrix is stored in pbmc[[“RNA”]]$counts.

https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz

library(dplyr)

##
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

##

filter, lag

The following objects are masked from 'package:base':
##

intersect, setdiff, setequal, union
library(Seurat)

Loading required package: SeuratObject
Loading required package: sp

##
Attaching package: 'SeuratObject'

The following objects are masked from 'package:base':
##
intersect, t

library (patchwork)

library(ggplot2)
library(ggmin)

Load the PBMC dataset

IMPORTANT: Make sure this Rmd file is saved in the same folder as the "filtered_gene_bc_matrices"” dir

pbmc.data <- Read10X("filtered_gene_bc_matrices/hgl9/")
Initialize the Seurat object with the raw (non-normalized data).
pbmc <- CreateSeuratObject(pbmc.data, "pbmc3k", 3,

Warning: Feature names cannot have underscores ('_'), replacing with dashes
(I_I)

pbmc

An object of class Seurat

13714 features across 2700 samples within 1 assay

Active assay: RNA (13714 features, O variable features)
1 layer present: counts

What does data in a count matrix look like?

Lets examine a few gemes in the first thirty cells
pbmc.datalc("CD3D", "TCL1A", "MS4A1"), 1:30]

3 x 30 sparse Matrix of class "dgCMatrix"

[[suppressing 30 column names 'AAACATACAACCAC-1', 'AAACATTGAGCTAC-1', 'AAACATTGATCAGC-1'

##

##CD3D 4 .10 . .1231..271..13.2 3.....3415
TCL1A10 .1

MS4A1 . 6 111 36 12 2

200)

. 1]

The . values in the matrix represent Os (no molecules detected). Since most values in an scRNA-seq matrix
are 0, Seurat uses a sparse-matrix representation whenever possible. This results in significant memory and
speed savings for Drop-seq/inDrop/10x data.

Standard pre-processing workflow

The steps below encompass the standard pre-processing workflow for scRNA-seq data in Seurat. These
represent the selection and filtration of cells based on QC metrics, data normalization and scaling, and the
detection of highly variable features.

QC and selecting cells for further analysis

Seurat allows you to easily explore QC metrics and filter cells based on any user-defined criteria. A few QC
metrics commonly used by the community include:

e The number of unique genes detected in each cell.

— Low-quality cells or empty droplets will often have very few genes

— Cell doublets or multiplets may exhibit an aberrantly high gene count
o Similarly, the total number of molecules detected within a cell (correlates strongly with unique genes)
e The percentage of reads that map to the mitochondrial genome

— Low-quality / dying cells often exhibit extensive mitochondrial contamination

— We calculate mitochondrial QC metrics with the PercentageFeatureSet() function, which
calculates the percentage of counts originating from a set of features

— We use the set of all genes starting with MT- as a set of mitochondrial genes

The [[operator can add columns to object metadata. This is a great place to stash (C stats
pbmc[["percent.mt"]] <- PercentageFeatureSet (pbmc, " MT-")

Where are QC metrics stored in Seurat?

e The number of unique genes and total molecules are automatically calculated during CreateSeuratOb-
ject()
— You can find them stored in the object meta data
Show @C metrics for the first 5 cells
head (pbmc@meta.data, 5)

orig.ident nCount_RNA nFeature_RNA percent.mt
AAACATACAACCAC-1 pbmc3k 2419 779 3.0177759
AAACATTGAGCTAC-1 pbmc3k 4903 1352 3.7935958
AAACATTGATCAGC-1 pbmc3k 3147 1129 0.8897363
AAACCGTGCTTCCG-1 pbmc3k 2639 960 1.7430845
AAACCGTGTATGCG-1 pbmc3k 980 521 1.2244898

e orig.ident: The original identity or sample label for the cells.

o nCount_ RNA: The total number of RNA molecules (UMIs) detected in each cell.
e nFeature_ RNA: The number of genes detected in that same cell.

e percent.mt: The percentage of reads mapping to mitochondrial genes.

In the example below, we visualize QC metrics, and use these to filter cells.

o We filter cells that have unique feature counts over 2,500 or less than 200
o We filter cells that have >5% mitochondrial counts

Visualize (JC metrics as a violin plot
plot_before_QC = VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

Warning: Default search for "data" layer in "RNA" assay yielded no results;
utilizing "counts" layer instead.

plot_before_QC

nFeature_RNA nCount_RNA percent.mt
15000
30001 201
154
10000
2000
5000
1000
T 0 L T T
2 2 2
‘0&0 ‘0&0 ‘0&0
N N N
Identity Identity Identity

FeatureScatter ts typically used to visualize feature-feature relationships, but can be used
for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
These plots help to identify poor—quality cells or doublets. Cells with high “nCount_RNA" but low 'nF

plotl <- FeatureScatter(pbmc, featurel = "nCount_RNA", feature2 = "percent.mt")
plot2 <- FeatureScatter(pbmc, featurel "nCount_RNA", feature2 = "nFeature_RNA")
plotl + plot2

-0.13 0.95

201 3000 1
151
s
1S 14]
*QE;' Identity 2' 2000 Identity
=}
S 10- pbme3k g pbme3k
e L
<
5 1000 A
O 4
0 5000 10000 15000 0 5000 10000 15000
nCount_RNA nCount_RNA
pbmc <- subset (pbnc, nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
Visualize (C metrics before and after QC
plot_after_QC <- VlnPlot(pbmc, c("nFeature_RNA", "nCount_RNA", "percent.mt"), 3)

Warning: Default search for "data" layer in "RNA" assay yielded no results;
utilizing "counts" layer instead.

plot_before_QC / plot_after_QC

nFeature_ RNA nCount_RNA percent.mt
' 15000 ’
30001 20
i 154
2000 4 10000
10
1000 50001 5.
. 0 : 01
2l 2l
<§9 <§9
< <
Identity Identity Identity
nFeature_ RNA nCount_RNA percent.mt
2500 .
2000 1 7500 1
1500 A 5000
1000 A
2500
500 1
<§$¥ <§$¥ <§§F
N N N
Identity Identity Identity

Normalizing the data

After removing unwanted cells from the dataset, the next step is to normalize the data. By default, we employ
a global-scaling normalization method “LogNormalize” that normalizes the feature expression measurements
for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms
the result. In Seurat v5, Normalized values are stored in pbmc[[“RNA”]]$data.

pbmc <- NormalizeData(pbmc, "LogNormalize", 10000)

Normalizing layer: counts

For clarity, in this previous line of code (and in future commands), we provide the default values for certain
parameters in the function call. However, this isn’t required and the same behavior can be achieved the
following code.

pbmc <- NormalizeData (pbmc)

Normalizing layer: counts

While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies
on an assumption that each cell originally contains the same number of RNA molecules.

e “normalization.method”: Method for normalization.
— “LogNormalize”: Feature counts for each cell are divided by the total counts for that cell and
multiplied by the scale.factor. This is then natural-log transformed using loglp
— “CLR”: Applies a centered log ratio transformation
— “RC”: Relative counts. Feature counts for each cell are divided by the total counts for that cell
and multiplied by the scale.factor. No log-transformation is applied. For counts per million (CPM)
set scale.factor = 1e6
e While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling
relies on an assumption that each cell originally contains the same number of RNA molecules.
e There is an alternative workflows for the single cell preprocessing that do not make these assumptions:
SCTransform() normalization workflow. The use of SCTransform replaces the need to run NormalizeData,
FindVariableFeatures, or ScaleData (described below.)

Apply sctransform normalization

o Note that this single command replaces NormalizeData(), ScaleData(), and FindVariableFeatures().

e Transformed data will be available in the SCT assay, which is set as the default after running sctransform

e During normalization, we can also remove confounding sources of variation, for example, mitochondrial
mapping percentage

run sctransform
#pbmec <- SCTransform(pbmc, vars.to.regress = "percent.mt", verbose = FALSE)

Identification of highly variable features (feature selection)

We next calculate a subset of features that exhibit high cell-to-cell variation in the dataset (i.e, they are
highly expressed in some cells, and lowly expressed in others). We found that focusing on these genes in
downstream analysis helps to highlight biological signal in single-cell datasets.

By default, we return 2,000 features per dataset. These will be used in downstream analysis, like PCA.

pbmc <- FindVariableFeatures (pbmc, ST 2000)

Finding variable features for layer counts

Identify the 10 most highly variable genes
topl0 <- head(VariableFeatures(pbmc), 10)

topl0
[1] "PPBP" "LYZ" "S100A9" "IGLL5" "GNLY" "FTL" "PF4"
[9] "GNG11" "S100A8"

plot wvariable features with and without labels
plotl <- VariableFeaturePlot (pbmc)
plot2 <- LabelPoints(plotl, top10, TRUE)

When using repel, set xnudge and ynudge to O for optimal results

plotl + plot2

IIFTHl n

Warning in scale_x_loglO(): log-10 transformation introduced infinite values.
log-10 transformation introduced infinite values.

Standardized Variance

. PPBP
91 S100A9
. e IGLL5 Loz
© .GNLY FTL
. 8 .
. . PF4
. -g FTH1
>
* Non-variable count: 11714 3 61 GNG11 S100A8 ¢ Non-variable count: 11714
° o « Variable count: 2000 3 o ° e « Variable count: 2000

g .

e)

c

I}

o]

n
3 4

.
O -
1e-02 1e+00 1e+02 1e-02 1e+00 1e+02
Average Expression Average Expression

Scaling the data

Next, we apply a linear transformation (‘scaling’) that is a standard pre-processing step prior to dimensional
reduction techniques like PCA. The ScaleData() function:

o Shifts the expression of each gene, so that the mean expression across cells is 0
e Scales the expression of each gene, so that the variance across cells is 1

— This step gives equal weight in downstream analyses, so that highly-expressed genes do not

dominate
o The results of this are stored in pbmc[[“RNA”]]$scale.data
o By default, only variable features are scaled.
e You can specify the features argument to scale additional features

all.genes <- rownames (pbmc)
pbmc <- ScaleData(pbmc, all.genes)

Centering and scaling data matrix

Perform linear dimensional reduction

Next we perform PCA on the scaled data. By default, only the previously determined variable features are
used as input, but can be defined using features argument if you wish to choose a different subset (if you do
want to use a custom subset of features, make sure you pass these to ScaleData first).

For the first principal components, Seurat outputs a list of genes with the most positive and negative loadings,
representing modules of genes that exhibit either correlation (or anti-correlation) across single-cells in the
dataset.

pbmc <- RunPCA (pbmc, VariableFeatures(pbmc))

PC_ 1

Positive: CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP

FCER1G, CFD, LGALS1, S100A8, CTSS, LGALS2, SERPINA1, IFITM3, SPI1, CFP

PSAP, IFI30, SAT1, COTL1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD

Negative: MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CD27, STK17A, CTSW

CDh247, GIMAP5, AQP3, CCL5, SELL, TRAF3IP3, GZMA, MAL, CST7, ITM2A

MYC, GIMAP7, HOPX, BEX2, LDLRAP1, GZMK, ETS1, ZAP70, TNFAIP8, RIC3

PC_ 2

Positive: CD79A, MS4A1, TCL1A, HLA-DQA1l, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74
HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1l, FCRLA, HVCN1, LTB

BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, Cl60orf74

Negative: NKG7, PRF1, CST7, GZMB, GZMA, FGFBP2, CTSW, GNLY, B2M, SPON2

CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX

TTC38, APMAP, CTSC, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC

PC_ 3

Positive: HLA-DQA1l, CD79A, CD79B, HLA-DQB1, HLA-DPB1, HLA-DPA1, CD74, MS4A1, HLA-DRB1, HLA-DRA
HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8

PLAC8, BLNK, MALAT1, SMIM14, PLD4, LAT2, IGLL5, P2RX5, SWAP70, FCGR2B

Negative: PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU

HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1

NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, MPP1, CMTM5, RP11-367G6.3, MYL9, GP1BA

PC_ 4

Positive: HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, PF4, TCL1A
SDPR, HLA-DPA1, HLA-DRB1, HLA-DQA2, HLA-DRA, PPBP, LINCO0926, GNG11, HLA-DRB5, SPARC
GP9, AP001189.4, CA2, PTCRA, CD9, NRGN, RGS18, GZMB, CLU, TUBB1

Negative: VIM, IL7R, S100A6, IL32, S100A8, S100A4, GIMAP7, S100A10, S100A9, MAL

AQP3, CD2, CD14, FYB, LGALS2, GIMAP4, ANXA1l, CD27, FCN1, RBP7

LYZ, S100A11, GIMAP5, MS4A6A, S100A12, FOLR3, TRABD2A, AIF1, IL8, IFI6

PC_ 5

Positive: GZMB, NKG7, S100A8, FGFBP2, GNLY, CCL4, CST7, PRF1, GZMA, SPON2

GZMH, S100A9, LGALS2, CCL3, CTSW, XCL2, CD14, CLIC3, S100A12, CCL5

RBP7, MS4A6A, GSTP1, FOLR3, IGFBP7, TYROBP, TTC38, AKR1C3, XCL1, HOPX

Negative: LTB, IL7R, CKB, VIM, MS4A7, AQP3, CYTIP, RP11-290F20.3, SIGLEC10, HMOX1

PTGES3, LILRB2, MAL, CD27, HN1, CD2, GDI2, ANXA5, CORO1B, TUBA1B

FAM110A, ATP1A1, TRADD, PPA1, CCDC109B, ABRACL, CTD-2006K23.1, WARS, VMO1, FYB

Seurat provides several useful ways of visualizing both cells and features that define the PCA, including
VizDimReduction(), DimPlot(), and DimHeatmap()

Ezamine and visualize PCA results a few different ways
print (pbmc[["pca"]], 138, 5)

PC_ 1
Positive: CST3, TYROBP, LST1, AIF1, FTL
Negative: MALAT1, LTB, IL32, IL7R, CD2

PC_ 2
Positive: CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1

Negative: NKG7, PRF1, CST7, GZMB, GZMA

PC_ 3
Positive: HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1

Negative: PPBP, PF4, SDPR, SPARC, GNG11

PC_ 4
Positive: HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1

Negative: VIM, IL7R, S100A6, IL32, S100A8

PC_ 5
Positive: GZMB, NKG7, S100A8, FGFBP2, GNLY

Negative: LTB, IL7R, CKB, VIM, MS4A7

VizDimLoadings (pbmc, 1:2, "pca")
CST3 ° CD79A
ROBP - ° MS4A1 A
LST] 4 ° TCL1A - °
AlE1 - ° HLA-DQAI1 °
FTL - ° HLA-DOB1 A °
FTH1 1 ° HLA-DRA °
LYZ A . LINC00926 - °
FCN1 - ° CD79B A .
S100A9 1 ° APMAP - °
TYMP - ° TTC38 A °
FCER1G - ° HOPX °
CED A ° SRGN 1 °
LGALS] 1 ° AKR1C3 1 °
S100AS A ° CLICS - °
CTSS T ° XCL2 - °
LGALS?Z 1 ° CD24/ 1 o
SERPINAL - ° CCLS 1 °
IFITMS3 - o FCGR3A - °
SPI1 + ° GZMH - °
CFP 1 ° CCL4 1 °
PSAP ° SPONZ2 1 °
IFI130 - ° B2Mq e
SATT A ° GNLY 1 o
COTL1 1 ° CISW-H e
S100A11 1 ° FGEBP21 e
NPC2 1 ° GZMAA
GRN - ° GZMBA e
LGALSS3 1 o CSI71 @
GSTP] - ° PRF1- e
MALATIAe NKG7{e .
—0.10-0.050.00 0.05 0.10 -0.1 0.0
PC 1 PC 2
DimPlot (pbmc, "pca") + NoLegend()

101

PC

_10-

0 10
PC 1

Determine the ‘dimensionality’ of the dataset

To overcome the extensive technical noise in any single feature for scRNA-seq data, Seurat clusters cells
based on their PCA scores, with each PC essentially representing a ‘metafeature’ that combines information
across a correlated feature set. The top principal components therefore represent a robust compression of the
dataset. However, how many components should we choose to include? 107 20?7 1007

We generates an ‘Elbow plot’: a ranking of principle components based on the percentage of variance explained
by each one (ElbowPlot() function). In this example, we can observe an ‘elbow’ around PC9-10, suggesting
that the majority of true signal is captured in the first 10 PCs.

ElbowPlot (pbmc)

10

Standard Deviation

PC

Identifying the true dimensionality of a dataset — can be challenging/uncertain for the user. We therefore
suggest these multiple approaches for users. The first is more supervised, exploring PCs to determine relevant
sources of heterogeneity, and could be used in conjunction with GSEA for example. The second (ElbowPlot)
The third is a heuristic that is commonly used, and can be calculated instantly. In this example, we might
have been justified in choosing anything between PC 7-12 as a cutoff.

We chose 10 here, but encourage users to consider the following:

e Dendritic cell and NK aficionados may recognize that genes strongly associated with PCs 12 and 13
define rare immune subsets (i.e. MZB1 is a marker for plasmacytoid DCs). However, these groups are
so rare, they are difficult to distinguish from background noise for a dataset of this size without prior
knowledge.

o We encourage users to repeat downstream analyses with a different number of PCs (10, 15, or even 50!).
As you will observe, the results often do not differ dramatically.

o We advise users to err on the higher side when choosing this parameter. For example, performing
downstream analyses with only 5 PCs does significantly and adversely affect results.

Cluster the cells

Seurat applies a graph-based clustering approach. Importantly, the distance metric which drives the clustering
analysis (based on previously identified PCs) remains the same. However, our approach to partitioning the
cellular distance matrix into clusters has dramatically improved. Briefly, these methods embed cells in a
graph structure - for example a K-nearest neighbor (KNN) graph, with edges drawn between cells with similar
feature expression patterns, and then attempt to partition this graph into highly interconnected ‘quasi-cliques’
or ‘communities’.

We first construct a KNN graph based on the euclidean distance in PCA space, and refine the edge weights
between any two cells based on the shared overlap in their local neighborhoods (Jaccard similarity). This step

11

is performed using the FindNeighbors() function, and takes as input the previously defined dimensionality of
the dataset (first 10 PCs).

To cluster the cells, we next apply modularity optimization techniques such as the Louvain algorithm (default)
or SLM, to iteratively group cells together, with the goal of optimizing the standard modularity function.
The FindClusters() function implements this procedure, and contains a resolution parameter that sets the
‘granularity’ of the downstream clustering, with increased values leading to a greater number of clusters.
We find that setting this parameter between 0.4-1.2 typically returns good results for single-cell datasets of
around 3K cells. Optimal resolution often increases for larger datasets. The clusters can be found using the
Idents() function.

pbmc <- FindNeighbors (pbmc, 1:10)

Computing nearest neighbor graph

Computing SNN
pbmc <- FindClusters(pbmc, 0.5)

Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##

Number of nodes: 2638

Number of edges: 95965

##

Running Louvain algorithm...

Maximum modularity in 10 random starts: 0.8723

Number of communities: 9

Elapsed time: O seconds

Look at cluster IDs of the first 5 cells
head (Idents(pbmc), 5)

AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1

2 3 2 1
AAACCGTGTATGCG-1
6

Levels: 01 2345678

Run non-linear dimensional reduction (UMAP /tSNE)

Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP, to visualize and
explore these datasets. The goal of these algorithms is to learn underlying structure in the dataset, in order
to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within
graph-based clusters determined above should co-localize on these dimension reduction plots.

While we and others have routinely found 2D visualization techniques like tSNE and UMAP to be valuable
tools for exploring datasets, all visualization techniques have limitations, and cannot fully represent the
complexity of the underlying data. In particular, these methods aim to preserve local distances in the dataset
(i.e. ensuring that cells with very similar gene expression profiles co-localize), but often do not preserve more
global relationships. We encourage users to leverage techniques like UMAP for visualization, but to avoid
drawing biological conclusions solely on the basis of visualization techniques.

pbmc <- RunUMAP (pbmc, 1:10)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R

To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session

12

21:14:40 UMAP embedding parameters a = 0.9922 b = 1.112

21:14:40 Read 2638 rows and found 10 numeric columns

21:14:40 Using Annoy for neighbor search, n_neighbors = 30

21:14:40 Building Annoy index with metric = cosine, n_trees = 50
0, 10 20 30 40 50 60 70 80 90 100%

R Rl et B e B B e B B

H kokokokokokskokoskokok skokok sk ok ok skok sk ok sksk ok ke ok sksk sk sk sk sk ok sk ok sk sk sk sk ok sk sk sk ok ok ok |

21:14:40 Writing NN index file to temp file /var/folders/wk/p4zj4_993czf2pnjs015dffm0000gp/T//RtmpfV.
21:14:40 Searching Annoy index using 1 thread, search_k = 3000

21:14:41 Annoy recall = 100%

21:14:42 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30

21:14:43 Initializing from normalized Laplacian + noise (using RSpectra)

21:14:43 Commencing optimization for 500 epochs, with 105124 positive edges

21:14:49 Optimization finished

note that you can set “label = TRUE ™ or use the LabelClusters function to help label
individual clusters

DimPlot (pbmc, reduction = "umap")
151
10
® 0
o1
® 2
NI ® 3
© ® 4
£ ®5
04 ® 6
e 7
® 8
-5 -

DimPlot (pbmc, reduction = "umap", label = T)

13

15
101
® 0
® 1
® 2
‘;’J5' ® 3
) ® 14
g ® 5
04 ® 6
° 7
® 8
_5-

Finding differentially expressed features (cluster biomarkers)

Seurat can help you find markers that define clusters via differential expression (DE). By default, Seurat
performs differential expression (DE) testing based on the non-parametric Wilcoxon rank sum test. It
identifies positive and negative markers of a single cluster (specified in ident.1), compared to specific groups
of cells (ident.2). FindAllMarkers() automates this process for all clusters, but you can also test groups of
clusters vs. each other, or against all cells.

find all markers of cluster 2 (cluster ID in the above UMAP figure)
cluster2.markers <- FindMarkers(pbmc, ident.l = 2)
head(cluster2.markers, n = 5)

#i# p_val avg_log2FC pct.l pct.2 p_val_adj
IL32 2.593535e-91 1.3221171 0.949 0.466 3.556774e-87
LTB 7.994465e-87 1.3450377 0.981 0.644 1.096361e-82
CD3D 3.922451e-70 1.0562099 0.922 0.433 5.379250e-66
IL7R 1.130870e-66 1.4256944 0.748 0.327 1.550876e-62
LDHB 4.082189e-65 0.9765875 0.953 0.614 5.598314e-61

The results data frame has the following columns :

e p_val: p-value (unadjusted)

e avg log2FC : log fold-change of the average expression between the two groups. Positive values indicate
that the feature is more highly expressed in the first group.

e pct.1 : The percentage of cells where the feature is detected in the first group

e pct.2 : The percentage of cells where the feature is detected in the second group

e p_val_adj: Adjusted p-value, based on Bonferroni correction using all features in the dataset.

If the ident.2 parameter is omitted or set to NULL, FindMarkers() will test for differentially expressed features

14

between the group specified by ident.1 and all other cells. Additionally, the parameter only.pos can be set to
TRUE to only search for positive markers, i.e. features that are more highly expressed in the ident.1 group.

cluster2.markers <- FindMarkers(pbmc, 2, NULL, TRUE)
head(cluster2.markers, 5)

#H# p_val avg_log2FC
IL32 2.593535e-91 1.3221171

pct.1 pct.2 p_val_adj
0
LTB 7.994465e-87 1.3450377 O
0
0
0

.949 0.466 3.556774e-87
.981 0.644 1.096361e-82
CD3D 3.922451e-70 1.0562099 0.922 0.433 5.379250e-66
IL7R 1.130870e-66 1.4256944 0.748 0.327 1.550876e-62

LDHB 4.082189e-65 0.9765875 0.953 0.614 5.598314e-61

find all markers distinguishing cluster 5 from clusters 0 and 3

clusterb.markers <- FindMarkers(pbmc, 5, c(0, 3))
head(cluster5.markers, 5)

p_val avg_log2FC pct.1 pct.2 p_val_adj
FCGR3A 2.150929e-209 6.832372 0.975 0.039 2.949784e-205
IFITM3 6.103366e-199 6.181000 0.975 0.048 8.370156e-195
CFD 8.891428e-198 6.052575 0.938 0.037 1.219370e-193
CD68 2.374425e-194 5.493138 0.926 0.035 3.256286e-190

RP11-290F20.3 9.308287e-191 6.335402 0.840 0.016 1.276538e-186

find markers for every cluster compared to all remaining cells, report only the positive ones
pbmc.markers <- FindAllMarkers (pbmc, TRUE)

Calculating cluster O

Calculating cluster 1

Calculating cluster

Calculating cluster

Calculating cluster

Calculating cluster

2
3
4
Calculating cluster 5
6
Calculating cluster 7

8

Calculating cluster

pbmc.markers %>
group_by(cluster) %>
dplyr::filter(avg_log2FC > 1)

A tibble: 7,046 x 7
Groups: cluster [9]

H# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene

#i# <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <chr>

1 1.74e-109 1.19 0.897 0.593 2.39e-105 0 LDHB

2 1.17e- 83 2.37 0.435 0.108 1.60e- 79 0 CCR7

3 8.94e- 79 1.09 0.838 0.403 1.23e- 74 0 CD3D

4 3.05e- 53 1.02 0.722 0.399 4.19e- 49 0 CD3E

5 3.28e- 49 2.10 0.333 0.103 4.50e- 45 0 LEF1

6 6.66e- 49 1.25 0.623 0.358 9.13e- 45 0 NOSIP

7 9.31e- 44 2.02 0.328 0.11 1.28e- 39 0 PRKCQ-AS1
8 4.69e- 43 1.53 0.435 0.184 6.43e- 39 0 PIK3IP1

15

[EE

0.19 4 2.0le- 350 FHIT
0.26

9 1.47e- 39 2.70 0.0
1.94 0.087 3.34e- 29 0O MAL

10 2.44e- 33
i 7,036 more rows

5
2

Seurat has several tests for differential expression which can be set with the test.use parameter:

o “wilcox” : Wilcoxon rank sum test (default, using ‘presto’ package)

o “wilcox_limma” : Wilcoxon rank sum test (using ‘limma’ package)

o “bimod” : Likelihood-ratio test for single cell feature expression, (McDavid et al., Bioinformatics, 2013)

e “roc” : Standard AUC classifier

e “t”: Student’s t-test

e “poisson” : Likelihood ratio test assuming an underlying negative binomial distribution. Use only for
UMI-based datasets

e “negbinom” : Likelihood ratio test assuming an underlying negative binomial distribution. Use only for
UMI-based datasets

e “LR” : Uses a logistic regression framework to determine differentially expressed genes. Constructs a
logistic regression model predicting group membership based on each- feature individually and compares
this to a null model with a likelihood ratio test.

o “MAST” : GLM-framework that treates cellular detection rate as a covariate (Finak et al, Genome
Biology, 2015) (Installation instructions)

o “DESeq2” : DE based on a model using the negative binomial distribution (Love et al, Genome Biology,
2014) (Installation instructions) For MAST and DESeq2, please ensure that these packages are installed
separately in order to use them as part of Seurat. Once installed, use the test.use parameter can be
used to specify which DE test to use.

For example, the ROC test returns the ‘classification power’ for any individual marker (ranging from 0 -
random, to 1 - perfect).

clusterO.markers <- FindMarkers (pbmc, 0, 0.25, "roc",

Visualizations of marker feature expression

We include several tools for visualizing marker expression. VInPlot() (shows expression probability distributions
across clusters), and FeaturePlot() (visualizes feature expression on a tSNE or PCA plot) are our most
commonly used visualizations.

feature_genes = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A")

Violin plot - Visualize single cell expression distributions in each cluster
V1nPlot (pbmc, feature_genes)

16

MS4A1 GNLY CD3E
5.
44 61
4.
S 3 g 1 g
g 8 4 N SR 2 34:
c c LR K c
i) o e - i)
LR 7] LA e 7]
(%] (%] K BB 0 2
o ’ o : - o
o) [} . . [}
x o > Pl Y . PR . =
a4 | ATy i
O P | R .I 11
O- - A B A O.
O v 1 X % o A B O N 1 ® X b 6 A ® O N 4 > X % o A Q
Identity Identity Identity
CD14 FCER1A FCGR3A
44 41
2 2 2 3
@ o 31 3]
- - -
c o c
o o o X
2 2, A
[%] [%] (%]
o o g
o o o
> > X
| g g
0 . . . - - - —— 04 - S .
N 1 ™ X % © A B O N Y X b 6 A » O N v ®» X b © A ®
Identity Identity Identity
LYz PPBP CD8A
61 3]
© © ©
3 3 & |
= = | i
c c 41 c 21
o (=] (=]
‘0 ‘0 ‘«»
[%] [%] [%]
g g g ;
=3 o] . 2] '
]] e gt
01 01

NN
Identity

6 o A B

NS
Identity

O N 1 % % 5 6 A
Identity

Ridge Plot - show the distribution of expression values for each gene across all clusters.

RidgePlot (pbmc, features =

##

Picking joint bandwidth

##

Picking joint bandwidth

##

Picking joint bandwidth

Picking joint bandwidth

##

Picking joint bandwidth

##

Picking joint bandwidth

##

Picking joint bandwidth

feature_genes, ncol =

of
of
of
of
of
of
of

2)

0.0236
0.0971
0.125

0.0337
0.0659
0.0872
0

.319

17

Picking joint bandwidth of 0.033
Picking joint bandwidth of 0.0368

MS4A1 GNLY
2 2
< IS
(] ()
=) k=] a—
0 1 2 3 4 0 2 4 6
Expression Level Expression Level
CD3E CD14
= 2
g =
[} (4]
i) h) —
4 5 0 1 2 3 4
Expression Level Expression Level
FCER1A FCGR3A
2 2
= g
(] ()
K= — S
0 1 2 3 4 0 1 2 3 4
Expression Level Expression Level
LYz PPBP
2 2
c c g N e A
(] ()
=) S 6
5
4
3
5
0 2 4 6 0 2 4 6
Expression Level Expression Level
CD8A
2
g
[}
o
0 1 2 3

Expression Level
Dot Plot- visualizes both the percentage of expressing cells (dot size) and the average expression le
feature in each cluster. The color represents the average expression level
DotPlot(pbmc, features = feature_genes) + RotatedAxis()

18

Average Expression
71 . ‘ 2

6- ® - ® 1
5- o O 0

2>

% 44 e O)

S Percent Expressed
31 @ -
2 - o e 25

® 50
1-) ® ® 75
100
0- o . ®
SRR IR SRS AR
YOy O N A SR Mo
A\ e
Features

Single cell heatmap of feature expression
DoHeatmap (subset (pbmc, downsample = 100), features = feature_genes, size = 3)

Q % Vv % ™ “ © A Q
| N S I . . I —

MS4AL Expression

2
GNLY

1

CD3E 0

CD14
Identity
FCER1A 0
FCGR3A

LY.

N

PPBP

o N o g b~ W N P

CD8A

DoHeatmap() generates an expression heatmap for given cells and features. In this case, we are plotting the
top 20 markers (or all markers if less than 20) for each cluster.

19

Top 10 markers per cluster heatmap
pbmc.markers %>%
group_by(cluster) %>%
dplyr::filter(avg_log2FC > 1) %>%
slice_head(10) %>%
ungroup() -> topl0
DoHeatmap (pbmc, topl0$gene) + NoLegend()

,‘”\‘v“l,\, | LA 4 ‘ e e el L

e TR e 'H SRR | A et ke

.wmmmkumwmmmnumm \ R TR
‘ A
‘ \Vlw%w"4?|'Iulﬂ'M""I‘:ﬂh“"';;

1 H\ \‘IHI i H . il H‘ I m‘u'\‘l" w ‘n il \‘\‘ M‘ul’l i Al “‘“w‘I\'!‘uul)\‘\w\‘\‘,ml‘:”‘lw‘i‘!“\“;‘”m: \“I\ill;:ﬂhl\l\ " ‘ \w "‘:‘\'\ e H\m |”\‘\“ ‘I‘:‘\‘\Hi i

“M W‘\ IH\‘ \‘\ “I‘I ‘N \‘\“\ ‘IWI ‘v I‘I I\‘“\I“N\““M ‘H“i H ! ‘\H‘\‘HHHIH\‘I Hw “\‘\“ ‘\ ! | \‘\‘\I‘\”\‘\“ l i LY | \“\‘H\ HI\‘ \‘H ”\‘ ‘H‘ w“ w

R ‘ M il = |
| Mg

W$ e
wwm

T AT

1l

e e M :w;w

‘ o "hs\(‘ﬂ“"‘h‘.‘hf“l‘&’wll”*\\\H‘N

Feature plot - visualize feature expression in low-dimensional space
FeaturePlot (pbmc, feature_genes)

20

MS4A1

15 g
10 '
4
51 ; 3
: 2
0 . !
0
_5.
10 5 0 5 10 15
umap_1
CD14
15
10
54 3
. 2
0 ’ !
0
_5.
10 5 0 5 10 15
umap_1
LYZ
15 ,
2%
104 !
6
51 4
2
O.
ol 0
n -)-‘:h:.;
[e o
.10 5 0 5 10 15
umap_1

Additions to FeaturePlot

GNLY
151
101
5.
O.
Qﬂ";‘r =
_5. -
10 5 0 5 10
umap_1
FCER1A
151
101
5.
K
O.
_5.
10 5 0 5 10 15
umap_1
PPBP
151
101
5.
O.
_5.
10 5 0 5 10 15
umap_1

Plot a legend to map colors to expression levels
FeaturePlot (pbmc, features =

"MS4A1")

21

O F,r N WH

o N A~ O

CD3E

5 10 15
umap_1
FCGR3A
15
10
n"'
o i
&0
-5 1
10 5 0 5 10 15
umap_1
CDS8A
15
10
5.
O.
."":;’._.:EI_:
-5 %
10 5 0 5 10 15
umap_1

O RPN WM

o R, N W b

o B, N W

MS4A1

154 |
10
4
(q\
| 54 3
3 ; 2
g 1
01 0
-5 - v »
~10 5 0 5 10 15
umap_1
Adjust the contrast in the plot
FeaturePlot (pbmc, features = "MS4A1", min.cutoff = 1, max.cutoff = 3)
MS4A1
151
10
3.0
N >
Q_I 54 2.5
@ , 2.0
g - 1.5
01 (1.0
-5
~10 5 0 5 10 15

22

Visualize co-expression of two features simultaneously
FeaturePlot(pbmc, features = c("MS4A1", "CD79A"), blend = TRUE)

154

101

umap_2

MS4A1

j

154

101

CD79A

§

“.

154

101

MS4A1_CD79A

2
¥

¥

-10 5 0 5
umap_1

~10 -5

0 5

umap_1

10 15

-0 5 0 5

umap_1

10 15

CD79A

Color threshold: 0.5

2 4 6 8
MS4A1

Split visualization to view expression by groups (replaces FeatureHeatmap)
pbmc$groups <- sample(c("groupl", "group2"), size

FeaturePlot(pbmc, features = c("MS4A1", "CD79A"), split.by = "groups")

23

ncol(pbmc), replace = TRUE)

groupl group2

151 151
s
d
4 g%ﬁ
104 104
N 51 N 51 =
& g 4
>
g A § R
0 0
-5 -5
-10 -5 0 5 10 15 -10 -5 0 5 10 15
umap_1 umap_1
151 151
’ é
55 p
104 104
Nl 54 : Nl 54 o)
o Q O
£ : £ 9
> > >
0 0
-5 -5
-10 5 0 5 10 15 -10 5 0 5 10 15
umap_1 umap_1

Violin plots can also be split on some variable. Simply add the splitting variable to object
metadata and pass it to the split.by argument
VlnPlot (pbmc, features = "percent.mt", split.by = "groups")

The default behaviour of split.by has changed.

Separate violin plots are now plotted side-by-side.

To restore the old behaviour of a single split violin,
set split.plot = TRUE.

#i#

This message will be shown once per session.

24

percent.mt

groupl
group2

SplitDotPlotGG has been replaced with the “split.by parameter for DotPlot
DotPlot(pbmc, features = feature_genes, split.by = "groups") + RotatedAxis()

Identity

25

8 grouplq{ e ° . o .
8 _group2 1
7_groupl - . o o
7_group2 A
6_group1 - [) o (]
6_group2 -
5_groupl . e O

5_group2 A Percent Expressed

0
e 25
® 50
® 5
3 groupl{ @ @ 100

3_group2 1

4 groupl - ° @ ° Y

4 _group?2 -

Split Identity

2_group1 - o
2_group2 A
1_groupl A (] o
1 _group2 A
0_group1 ([.

0_group?2

R ER RS
Y~ AV 5 Y %
&“‘ > & & &

Features

Applying themes to plots

With Seurat, all plotting functions return ggplot2-based plots by default, allowing one to easily capture and
manipulate plots just like any other ggplot2-based plot.

library(ggplot2)
baseplot <- DimPlot (pbmc, "umap")

Customize the plot using ggplot2 layers
baseplot +
labs("Clustering of 2,700 PBMCs", "UMAP 1", "UMAP 2") + # Add title and azis labels
theme (
element_text(18, "bold", 0.5), # Title font size, bold, cen

26

axis.title = element_text(size = 14), # Azis label size

axis.text = element_text(size = 12), # Tick label size
legend.title = element_text(size = 14), # Legend title size
legend.text = element_text(size = 12) # Legend item text size

)+

guides(colour = guide_legend(override.aes = list(size = 5))) # Increase dot size in legend

Clustering of 2,700 PBMCs

151
10- ‘ 0
o1
o2
a 5 ®:
< O 4
2 ®s
0 O 6
o7
[] ‘ 8

_5-

_10 5 0 5 10

UMAP 1

Use community-created themes, overwriting the default Seurat-applied theme Install ggmin
with remotes::install_github('sjessa/ggmin')

#remotes: :install_github('sjessa/ggmin')

baseplot + ggmin::theme_powerpoint ()

27

15

10

umap_2

0000000OCGO
ONOURAWNRO

umap_1

Seurat also provides several built-in themes, such as DarkTheme; for more detatils see
2SeuratTheme
baseplot + DarkTheme ()

28

Other theme:

o theme minimal() # Cleaner white background
o theme classic() # No gridlines
o theme void() # No axes at all (for minimalist look)
Chatin themes together
baseplot + FontSize(20, 20) + NoLegend()

29

0
1
2
K]
4
)
6
7
8

15 1

10 4

Assigning cell type identity to clusters

Fortunately in the case of this dataset, we can use canonical markers to easily match the unbiased clustering
to known cell types:

Cluster ID Markers Cell Type

0 IL7R, CCR7 Naive CD4+ T

1 CD14, LYZ CD14+ Mono

2 IL7R, S100A4 Memory CD4+ T
3 MS4A1 B

4 CD8A CD8+ T

5 FCGR3A, MS4A7 FCGR3A+ Mono
6 GNLY, NKG7 NK

7 FCER1A, CST3 DC

8 PPBP Platelet

new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono",
"NK", "DC", "Platelet")

names (new.cluster.ids) <- levels(pbmc)

pbmc <- RenameIdents(pbmc, new.cluster.ids)

DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) # + NoLegend()

30

15

10
Naive CD4 T
CD14+ Mono
Memory CD4 T
B

CD8T
FCGR3A+ Mono
NK

DC

Platelet

FCGR&Mono

Platelet

-10 -5 0 5 10

library(ggplot2)

plot <- DimPlot(pbmc, reduction = "umap", label = TRUE, label.size = 4.5) + xlab("UMAP 1") + ylab("UMAP
theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) + guides(colour

#ggsave (filename = "./pbmc3k_umap.jpg", height = 7, width = 12, plot = plot, quality = 50)

ggsave(filename = "pbmc3k_umap.jpg", height = 7, width = 12, plot = plot, quality = 50)

saveRDS(pbmc, file = "./pbmc3k_final.rds")

31

	Setup the Seurat Object
	What does data in a count matrix look like?

	Standard pre-processing workflow
	QC and selecting cells for further analysis

	Normalizing the data
	Apply sctransform normalization

	Identification of highly variable features (feature selection)
	Scaling the data
	Perform linear dimensional reduction
	Determine the `dimensionality' of the dataset
	Cluster the cells
	Run non-linear dimensional reduction (UMAP/tSNE)
	Finding differentially expressed features (cluster biomarkers)
	Visualizations of marker feature expression
	Additions to FeaturePlot
	Applying themes to plots

	Assigning cell type identity to clusters

