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Why single-cell sequencing?

@ Cells are minimal functional units in a biological system.

@ The human body is composed of approximately 37.2 trillion
single cells that live harmoniously in tissues among their
neighbors.

@ However, in diseases such as cancer, a single cell can lead to
the downfall of the entire organism.

@ The single cell analysis is needed to understand the molecular
behavior leading to cellular function in organisms.

Wang et.al Advances and Applications of Single Cell Sequencing Technologies



Single-cell vs bulk level study

@ Most genomic studies to date have focused on analyzing bulk
tissue samples, which are composed of millions of cells.

@ Consequently, it is difficult to resolve cell-to-cell variations and
identify rare cells that may play an important role in disease
progression.

@ The single cell technology has enabled dissection of cellular
heterogeneity in great detail.

Neil Savage Eleven grand challenges in single-cell data science,Genome Biology 2020
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Application of single-cell RNA sequencing technology

@ Single-cell RNA sequencing has been employed in different
species, humans, animals and plants

o It offers a powerful tool to profile, identify, classify and
discover new or rare cell types and subtypes from different
human organs and tissues, giving more profound information
about health and disease in

o development

immunology

diabetes

microbiology

SARS-CoV-2

cancer biology

vascular biology

neurobiology and

clinical diagnosis

many other disciplines

Jovic. Clinical Translational Med., 2021



Single-cell RNA sequencing vs bulk RNA-sequencing
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scRNA-seq library preparation

Common steps required for the generation of scRNAseq libraries

include
@ cell dissociation
@ cell lysis
@ reverse transcription into first strand cDNA
@ second strand synthesis
@ cDNA amplification: (PCR or IVT(in vitro transcription))
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Cell isolation protocol
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Cell isolation protocol

Techniques Throughput

Fluorescence-activated cell sorting (FACS) High

Magnetic-activated cell sorting (MACS) High
Laser capture microdissection (LCM) Low
Manual cell picking Low
Microfluidic High

Advantage Disadvantage References

High specificity multiple parameters Large amount of material, Gross et al., 2015
dissociated cells, high skill needed

High specificity, cost effective Dissociated cells, non-specific cell Welzel et al., 2018
capture

Intact fixed and live tissue Contaminated by neighboring cells, Espina et al
high skill needed

Intact live tissue High skill needed, low throughput

Low sample consumption, Dissociated cells, high skill needed

integrated with amplification

Hu et.al. Frontiers in Cell and Development Biology 2016

@ Microfluidics has become popular due to its low sample
consumption, precise fluid control, and low operating costs.

e In particular, droplet-based microfluidics (also called
microdroplets) is currently the most popular high-throughput

platform



scRNA-seq techonogies

@ A number of scRNA-seq approaches are available now

@ These approaches differ in one or more of the following
aspects:
o cell isolation
o cell lysis
e reverse transcription
e amplification
@ PCR: Polymerase chain reaction
e IVT: in vitro transcrition
e transcript coverage
e strand specificity
o availability of UMI (unique molecular identifiers, molecular
tags that can be applied to detect and quantify the unique
transcripts)

Chen et.al. Frontiers in Genetics, 2019



Commonly used scRNA-seq technologies

Methods Transcript umMi Strand  References
coverage possibility specific

Tang method Nearly No No Tang et al., 2009
full-length
Quartz-Seq Full-length No No Sasagawa et al., 2013
SUPeR-seq Full-length No No Fan X. et al.,, 2015
Smart-seq Full-length No No Ramskold et al., 2012
Smart-seq2 Full-length No No Picelli et al., 2013
MATQ-seq Full-length Yes Yes Sheng et al., 2017
STRT-seq 5'-only Yes Yes Islam et al., 2011, 2012
and STRT/C1
CEL-seq 3-only Yes Yes Hashimshony et al., 2012
CEL-seq2 3'-only Yes Yes Hashimshony et al., 2016
MARS-seq 3'-only Yes Yes Jaitin et al., 2014
CytoSeq 3-only Yes Yes FanH.C. et al., 2015
Drop-seq 3'-only Yes Yes Macosko et al., 2015
InDrop 3-only Yes Yes Klein et al., 2015
Chromium- 3'-only Yes Yes Zheng et al., 2017
SPLiT-seq 3-only Yes Yes Rosenberg et al., 2018
sci-RNA-seq 3'-only Yes Yes Cao et al., 2017
Seqg-Well 3'-only Yes Yes Gierahn et al., 2017
DroNC-seq 3'-only Yes Yes Habib et al., 2017
Quartz-Seq2 3'-only Yes Yes. Sasagawa et al., 2018




Compare commonly used scRNA-seq approaches

@ Compared to 3°end and 5°end scRNA-seq technologies, the
full-length scRNA-seq methods have incomparable advantages
in

e isoform usage analysis
o allelic expression detection
o RNA editing identification

@ However, the full-length sequencing methods are limited by
lower cellular throughputs and higher costs

@ Droplet-based technologies, such as Drop-seq, InDrop, and
Chromium 10x genomics, can generally provide a lager

throughput of cells and a lower sequencing cost per cell
compared to whole-transcript scRNA- seq

e Suitable for generating huge amounts of cells to identify the
cell subpopulations of complex tissues or tumor samples.

Chen et.al. Frontiers in Genetics, 2019
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scRNA-seq data analysis work flow
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ERCC and UMI

@ Sources of technical variability include capture inefficiency,
drop out, amplification bias, sequencing depth and coverage,
library size, sequencing inefficiency, and batch effects.

@ To estimate the technical variances among different cells,
spike-ins, such as External RNA Control Consortium (ERCC)
controls and Unique molecular identifiers (UMIs) have been
widely used in the scRNA-seq methods.

@ The RNA spike-ins are RNA transcripts (with known
sequences and quantity) that are applied to calibrate the
measurements of RNA hybridization assays

@ UMIs can theoretically enable the estimation of absolute
molecular counts.

Chen et.al. Frontiers in Genetics, 2019



ERCC and UMI

@ ERCC and UMIs are not applicable to all scRNA-seq
technologies due to the inherent protocol differences

@ Spike-ins are used in approaches like Smart-seq2 and
SUPeR-seq but are not compatible with droplet-based
methods

@ UMIls are short random bardcodes (4-10 bp), which are added
to indivisual transcripts during reverse transcription

@ UMIs are typically applied to 3“end sequencing technologies
and help to remove the amplication noise and biases from
scRNA-seq data.
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Chen et.al. Frontiers in Genetics, 2019



Preprocessing raw scRNA-seq data

@ Assess reads quality: FastQC is a quality control took for both
single-cell and bulk sequence data

e Trim sequencing adapter and/or low qualty reads: cutadapt

@ Align reads: The alignment tools originally developed for bulk
RNA-seq are also applicable to scRNA-seq data.

Tools Category URL References

TopHat2 Read mapping

STAR Read mapping

HISATZ2 Read mapping

Chen et.al. Frontiers in Genetics, 2019



Low quality cells
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Quality control metrics for filtering out low quality cells

@ The samples contain only a few number of reads should be
discarded

@ The samples with very low mapping ratio should be eliminated

@ The cells with an extremely high portion of reads mapped to
the spike-ins indicate that they were probably broken during
cell capture process and should be removed

@ The number of expressed genes/transcripts can be detected in
each cell is also suggestive.

@ The ratio of reads mapped to mitochondrial genome is also
informative for identifying low-quality cells

Chen et.al. Frontiers in Genetics, 2019



QC matrics: mitochondrial proportion

@ The mtDNAY% threshold is used to filter out apoptotic, stressed,
low-quality cells in the data.

@ mtDNA% threshold depends highly on the tissue type and the
questions being investigated

o A very stringent mtDNA% threshold may cause bias in the
recovered cellular composition of the tissue under study and
increase the cost of the experiment.

o Inversely, a relaxed threshold of mtDNA% may allow
apoptotic, low-quality cells to remain in the analysis, resulting
in the identification of wrong biological patterns.

Osorio et.al . Bioinformatics, 2020



Quality control software

Some QC methods for scRNA-seq have been proposed:
e SinQC (Jiang et al., 2016)
@ Scater (McCarthy et al., 2017)



Batch effect correction

@ Single-cell data is often generated from multiple experiments
with differences in capturing times, handling technician, cell
dissociation protocols, reagent lots, equipments, and
technology platforms.

@ These differences lead to large variations or batch effects in
the data, and can confound biological variations of interest
during data integration



Batch effect correction

@ In a published study, fourteen scRNA-seq batch correction
algorithms were compared

@ The study showed that each batch-effect removal method has
its advantages and limitations

@ Based on their results, LIGER, Harmony, and Seurat 3 are
with top performance

Tran et.al . Genome Biology, 2020



Batch effect correction

@ Harmony performed well on datasets with common cell types,
and also different technologies, as well as comparatively low
runtime

o LIGER performed well, especially on datasets with
non-identical cell types, longer runtime than Harmony

@ Seurat 3 is also able to handle large datasets, however with
20-50% longer runtime than LIGER.

@ scMerge is recommended for improving recovery of DEGs in
batch-corrected data

Tran et.al . Genome Biology, 2020



An example of batch effect correction: mouse brain

scRNA-seq data
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Nomalization

@ Normalization is an essential step to reveal true signal by
adjusting unwanted biases resulted from technique variations.

@ In general, normalization can be divided into two different
types: within-sample normalization and between-sample
normalization

e Within- sample normalization aims to remove the gene-specific
biases (e.g., GC content and gene length), which makes gene
expression comparable within one sample

o between-sample normalization is to adjust sample- specific
differences (e.g., sequencing depth and capture efficiency) to
enable the comparison of gene expression between samples.

o If spike-ins or UMIs are used in scRNA-seq protocol,
normalization can be refined based on the performance of
spike-ins/UMls



Normlization software

Method Author Year Spike- Model Description
ins
SAMstrt  Katayama 2013 Yes Poisson resampling and non-parametric
etal statistics
BASICS  Vallejos 2015 Yes Use spike-ins for hierarchical Poisson/
etal Gamma model for technical variability.

Expand madel to incorporate biological
genes with new Poisson model

GRM Ding etal. 2015 Yes Gamma regression model from spike-ins
Simple  Satia 2015 Mo Divide gene counts for cells, then
Nom.  etal. multiply by scale factor and apply a log(x

+1) transformation to the result (included
in the Seurat package as NormalizeData)

scran Lunetal 2016 No Decarvolution of size factors from
constructed linear system. Form pools
of cels and normalize using summed
expression values

SCnorm  Bacher 2017 Optional Quantile based model for log

etal. sequencing depth.

Linnorm  Yip et al. 2017 Optional Linear maodels defined with a
normalization strength coefficient to
update means. Focuses on stable genes
to perform normalization

Lytal et.al. Frontiers in Genetics, 2020



t-SNE plots of the mouse embryonic data set under various

normalization methods
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Normalizatin software comparison
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Normalizatin software comparison

Category BASIiCS GRM Linnorm SAMstrt SCnorm seran Simple Norm
Mouse Embryonic Data (sec) 230 35 <5 <5 760 <5 <5
Mouse Lung Data (sec) 510 60 <5 5 1180 <5 <5
Mouse Embryonic Sim Data (sec) 110 15 <5 <5 110 <5 <5
Human Embryonic Data (sec) _ _ <5 _ 370 <5 <5

Classification (Spike-In Genes)
Visualization (Spike-In Genes)
Classification (Non-Spike-Ir)

Visualization (Non-Spike-In) _ _

A indlcates that the method La es sa | and a * indlcates somx
toother methods. " incicates that the method is not applicabo fo this type ofdata. Two variants st for o Mouse Embryonic Sim Data, but they had negligible differences in execution

time.

Lytal et.al. Frontiers in Genetics, 2020



Recover missing values

@ scRNA sequencing data often contain many missing values or
dropouts that usually caused by the low amounts of mRNA in
individual cells.

@ Consequently, significant portion of truly expressed transcripts may
not be detectable in scRNA-seq.

@ Several imputation methods have been recently developed for
scRNA-seq

Model-based imputation methods: bayNorm, SAVER, SAVER-X,
sclmpute, scRecover, VIPER,;

Smooth-based imputation methods: Drimpute, MAGIC, kNN-smoothing
Data reconstruction methods using deep-learning methods: Autolmpute,
DCA, Deeplmpute, SAUCIE, scScope, scVI

Low-rank matrix-based methods: ALRA, mclmpute, PBLR.

Hou et.al. Genome Biology, 2020



Methods comparison: Recover missing values
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Dimensionality Reduction

@ Dimensionality reduction methods that transform the original
high-dimensional noisy expression matrix into a
low-dimensional subspace with enriched signals

@ Commonly used dimensionality reduction methods.

e PCA is a linear dimensional reduction algorithm, which
assumes that the data is approximately normally distributed.

o T-distributed stochastic neighbor embedding (t-SNE) is a
non-linear approach mainly designed for visualizing high
dimensional data

o UMAP (uniform manifold approximation and projection)
(Becht et al., 2018), and scvis (Ding et al., 2018) were
specially developed for reducing the dimensions of scRNA-seq
data

Chen et.al. Frontiers in Genetics, 2019



Cell type ldentification
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Cell type ldentification

Approaches forclustering cells can be mainly grouped into two categories based
on whether prior information is used.

If a set of known markers was used in clustering, the methods are prior

information based.
@ ScType (Lanevsk et.al 2022), a fully-automated cell type identification
using a comprehensive cell marker database as background information.

@ Alternatively, unsupervised clustering methods can be used for de novo
detection of cell populations with scRNA-seq data.
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Evaluation matricess for clustering

Quantify the concordance of clustering results on each scRNA-seq
dataset with respect to their predefined cell-type annotations

@ Adjusted Rand index (ARI)
@ normalised mutual information (NMI)
o Fowlkes—Mallows index (FM)

@ Jaccard index (Jaccard).

Yu et.al. Genome Biology, 2022



Evaluate cell clustering methods

@ Benchmark the fourteen clustering methods across a large
number of datasets sampled from the Tabula Muris project
representing different data characteristics in various settings.

o Tabula Muris dataset contains 53,760 cells (FACS sorted and
sequenced using Smart-Seq2 protocol) from 81 cell types of 20
organs of 7 mice.

@ Evalute the accuracy on determining the number of cell types,
performance of cell clustering, and computing time and peak
memory

@ Further cross-compared the performance of clustering
algorithms on datasets with a large number of cells using both
Tabula Muris and Tabula Sapiens data.

Yu et.al. Genome Biology, 2022



clustering method performance across all major evaluation

criteria
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Visulization of clustering results
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Cell lineage construction

@ The cells in many biological systems exhibit a continuous
spectrum of states and involve transitions between different
cellular states.

@ Such dynamic processes can be computationally modeled by
reconstructing the cell trajectory and pseudotime based on
scRNA-seq data.

@ Pseudotime is an ordering of cells along the trajectory of a
continuously developmental process in a system, which allows
the identification of the cell types at the beginning,
intermediate, and end states of the trajectory



Cell lineage construction
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Cell lineage construction

methods

Tools

Monocle

Waterfall

Wishbone

GrandPrix

SCUBA

DPT

TSCAN

Monocle2

Slingshot

CellRouter

Dimensionality
reduction

CA

PCA

Diffusion maps

Gaussian
Process Latent
Variable Model
t-SNE

Diffusion maps

PCA

RGE

Any

Any

URL

http://cole-trapnell-lab.
github.io/monocle-release/
https:
//www.cell.com/cms/10.
1016/j.stem.2015.07.013/
attachment/3e966901-
034f-418a-a439-
996¢50292a11/mmc9.zip
https://github.com/
ManuSetty/wishbone
https://github.com/
ManchesterBioinference/
GrandPrix
https://github.com/gcyuan/
SCUBA
https://media.nature.com/
original/nature-assets/
nmeth/journal/v13/n10/
extref/nmeth.3971-S3.zip
https:
//github.com/zji90/TSCAN
http://cole-trapnell-lab.
github.io/monocle-release/
https://github.com/
kstreet13/slingshot
https://github.com/
edroaldo/cellrouter

References

Trapnell et a

Shin et al., 2015

Setty et al

Ahmed et al

Marco et al

Hag
2016

verdi et al

Jiand Ji, 2

Qiuetal
2018

Street et al

Lummertz da
Rocha et




Compare cell lineage construction methods
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Differential expression analysis

o Differentially expressed genes (DEGs) are identified by
comparing gene expression levels across one or more
conditions, such as diseases, genetic knockouts, or drug
treatments.

@ The analysis evaluates the magnitude and significance of
differences in gene expression patterns between the condition
of interest and a reference group.

@ In the case of single-cell RNA-Seq is commonly applied on the
cell type level.



Differential expression analysis

@ The technical variability, high noise (e.g., dropouts) and
massive sample size of scRNA-seq data raise challenges in
differential expression calling (McDavid et al., 2013).

@ Moreover, multiple possible cell states can exist within a

population of cells, leading to the multimodality of gene
expression in cells (Vallejos et al., 2016).



Differential expression analysis software

Pseudobulk methods
Pseudobulk methods that require built-in Pseudobulk methods that can be used
normalization with any normalization
Method name DESeq2 edgeR Limma ROTS
Normalization Median of ratios TMM TMM+voom TMM+CPM+log2
Statistical tests Negative binomial Negative binomial Linear model + Reproducibility
generalized linear model + empirical empirical Bayes optimized test
model Bayes procedure procedure statistic
R packages DESeq2 edgeR edgeR, Limma edgeR, ROTS
(normalization,
test)
Filtering Nonexpressed genes Nonexpressed genes Nonexpressed genes  Nonexpressed genes

Junttila et.al. Briefings in Bioinformatics, 2022



Differential expression analysis software

single-cell methods

Mixed models accounting for subjects as arandom effect Naive methodsthat ~ Methods that have the option to use latent variables to correct for
do not model batches, etc.
subjects
Method name ~ MAST_RE muscat_MM NEBULA-LN wilcoxon MAST LR negbinom poisson
Normalization No default (Log Log normalize Normalization Log normalize Lognormalize  Lognormalize  Log normalize Log normalize
normalize) factors from library
sizes
Statistical test:  Two-part hurdle Ime4 linear mixed Negative binomial ~ Wilcoxonranksum  Two-part hurdle  Logistic Negative binomial  Poisson
model with random  model with voom mixed model test model regression generalized linear  generalized
effect for subject weights model linear model
R packages MAST muscat nebula Seurat Seurat, MAST Seurat Seurat Seurat
(normalization
test)
Filtering Number cells Number cells expressing  Genes with counts genes P Number cells Number cells
expressing gene < gene <20, Numbercells  per cell <0.005 genes genes expressinggenes  expressing genes
subjects in sample<10 <3 <3

Junttila et.al. Briefings in Bioinformatics, 2022



Infer gene regulatory network (GRN)

c Single-cell omics data
@ GRNs models of the
regulation of gene expression
in the form of networks
@ Uncovering the topology and 5 ‘
. =
the dynamics of GRNs has > v
important implications for |
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of dynamic trajectories \ |/ ‘
- O

o identify differences

between condition
Mompel et.al. Nature Reviews genetics. 2023




Methods for regulatory network construction

Method Code Year
Boolean model

Boolean Pseudotir Python 2017
BTR R 2016
SCNS F# 2018
Differential equation

Inference Snapsh¢C++/Matlab 2015
SCODE R/Julia/Ruby 2017
SCOUP C++ 2016
Gene correlation

Empirical Bayes Julia 2018
Information Julia 2017
Measures

NLNET R 2016
SINCERA R 2015
SCENIC R/Python 2017
Correlation ensemble

LEAP R 2016
SINCERITIES R/Matlab 2017
SCIMITAR Python 2017
SCINGE Matlab 2019

Nguyen et.al.. Briefings in Bioinformatics, 2021



Compare GRN methods

@ Peformance with 139 simulated generate scRNA-seq datasets
using GeneNetWeaver software based on the curated human
network

@ Compare the methods based on three essential metrics:

@ accuracy in reconstructing reference networks using scRNA-seq
data

e sensitivity to dropout rate and sparsity

e time complexity

Nguyen et.al.. Briefings in Bioinformatics, 2021



Performance using 100 simulated datasets with 200

samples and varying number of genes
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Performance with different levels of sparsity using 25

simulated datasets
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Running time with varying numbers of

nes and samples
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Nguyen et.al.. Briefings in Bioinformatics, 2021





 Overall, LEAP and NLNET are the fastest and can finish every single analysis in minutes.


Cell-cell communication

@ Cell-cell interactions are essential to various biological
processes

@ In the multicellular interacting network, cells can interact and
influence each other’s behavior through specific signaling
molecules, including ligands, receptors, metabolites, ions, and
structural or secreted proteins

@ Understanding how the cells interact with each other will help
to reveal the potential mechanisms behind biological
processes, such as organ development and tumor progression



Table: Statistical-based Tools

Computation methods to infer cell-cell communication

Tool Subunit Prior Knowledge Language
CellCall Single subunit | Ligand-receptor pairs; down- | R

stream TF regulation
CellChat Multi-subunit | Ligand-receptor pairs; signal- | R

ing cofactors and pathways
CellPhoneDB Multi-subunit | Ligand-receptor pairs Python
ICELLNET Multi-subunit | Ligand-receptor pairs R
iTALK Single subunit | Ligand-receptor pairs R
SingleCellSignalR | Single subunit | Ligand-receptor pairs R

Liu et.al. Genome Biology 2022




Computation methods to infer cell-cell communication

Table: Network-based Tools

Tool Subunit Prior Knowledge Language
Connectome | Single subunit | Ligand-receptor pairs R
CytoTalk Single subunit | Ligand-receptor pairs R
Domino Multi-subunit | Ligand-receptor pairs; TF | R
regulation
NATMI Single subunit | Ligand-receptor pairs; ligand- | R
target pairs;  receptor-TF
pairs
NicheNet Single subunit | Ligand-receptor pairs; ligand- | R
target pairs; receptor-target
pairs
scMLnet Single subunit | Ligand-receptor pairs; | Python
receptor-TF pairs; TF-target
pairs

Liu et.al. Genome Biology 2022




Computation methods to infer cell-cell communication

Table: ST-based Tools

Tool Subunit Prior Knowledge Language
CellPhoneDB v3 | Multi-subunit | Ligand-receptor pairs; spatial | Python
microenvironment
Giotto Single subunit | Ligand-receptor pairs; cell | R
type colocalization; L-R co-
expression
stLearn Single subunit | Ligand-receptor pairs; cell | Python
type colocalization; L-R co-
expression

Liu et.al. Genome Biology 2022



Preformance with 15 simulated and 5 real scRNA-seq and
ST datasets

Evaluate the performance of cell-cell interaction methods by
integrating scRNA-seq data with spatial information from
spatial transcriptomics (ST) data

o ST profiles the relative position of different cells.
CellChat has the best performance in consistencies with
spatial information.
CellChat and CellPhoneDB will generate high-confidence
results with scaled computational resources
SingleCellSignalR showed a good performance but consumes
much time and memory.

CellChat, CellPhoneDB, NicheNet, and ICELLNET show
overall better performance than other tools in terms of
consistency with spatial tendency and software scalability.

Liu et.al. Genome Biology 2022



Many methods have been developed for scRNA-seq data
analysi. In general, each individual method has its advantage
and drawback.

The selection of the appropriate approaches for analysis
depends on characteristics of data and research purpose
Single-cell sequencing technology has been developed to
measure nearly all OMICS,

One major disadvantage of single cell RNA sequencing is the
loss of histological information due to dissociation of tissue
samples

Spatial transcriptomic methods bypass tissue dissociation and
retain the spatial information, allowing gene expression
assessment across thousands of cells within the context of
tissue.

The continuous development of the technology will broaden
its applications in clinical and personalized medicine.



